scholarly journals Performance assessment of dry electrodes for wearable long term cardiac rhythm monitoring: Skin-electrode impedance spectroscopy

Author(s):  
Antonio Bosnjak ◽  
Alan Kennedy ◽  
Pedro Linares ◽  
Maira Borges ◽  
James McLaughlin ◽  
...  
2022 ◽  
Author(s):  
Hao Chu ◽  
Chenxi Yang ◽  
Yantao Xing ◽  
Jianqing Li ◽  
Chengyu Liu

Abstract PurposeLong-term electrocardiogram (ECG) monitoring is an essential approach for the early diagnosis of cardiovascular diseases. Flexible dry electrodes that contains electrolyte without water could be a potential substitution of wet electrodes for long-term ECG monitoring. Therefore, this paper developes a long-term, portable ECG patch based on flexible dry electrodes, namely SEUECG-100.MethodA device consists of analog-front-end acquisition, data acquisition, and storage modules is developed and tested. An impedance test was conducted to compare the skin-electrode impedance of the flexible dry electrode and the Ag/AgCl wet electrode. The ECG signals were simutanously collected from the same subject using the SEUECG-100 and Shimmer device , which were then compared and analyzed from the perspective of ECG morphology, RR interval, and signal quality indices (SQI).ResultsThe experimental results reveal that the flexible dry electrode has the characteristics of low skin-electrode impedance. SEUECG-100 could collect high-quality ECG signals. The ECG signals collected by the two devices have a high RR interval correlation (r=0.999). SQI results show that SEUECG-100 is better than the Shimmer device in overcoming baseline drift. Long-term ECG acquisition and storage experiments show that SEUECG-100 could collect ECG signals with good stability and high reliability.ConclusionThe implementation of the proposed system design with dry electrodes could can effectively record long-term ECG monitoring with high quality in comparison to systems with wet electrodes from both impedance characteristics and signal morphology aspects.


ACS Sensors ◽  
2020 ◽  
Vol 5 (11) ◽  
pp. 3392-3397
Author(s):  
Nikolaus Doppelhammer ◽  
Nick Pellens ◽  
Johan Martens ◽  
Christine E. A. Kirschhock ◽  
Bernhard Jakoby ◽  
...  

Author(s):  
Nikolaus Doppelhammer ◽  
Nick Pellens ◽  
Erwin K. Reichel ◽  
Christine E. A. Kirschhock ◽  
Bernhard Jakoby

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Muhib Khan ◽  
Daniel J. Miller

One-third of stroke and transient ischemic attack (TIA) are cryptogenic, and paroxysmal atrial fibrillation (PAF) has been suggested as a possible cause for these cryptogenic strokes. Multiple studies have recently evaluated long-term cardiac rhythm monitoring with good yield for PAF. The duration of monitoring varies between studies as well as the qualifying event definition. Moreover, the clinical significance of very brief atrial fibrillation events is unclear in the literature. This paper provides an overview of current advances in the detection of paroxysmal atrial fibrillation, the clinical and genetic factors predictive of arrhythmia detection, and the therapeutic dilemma concerning this approach.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuanhang Yang ◽  
Gang Feng ◽  
Yanhong Gu ◽  
Jie Zhao ◽  
Jian Liang

Purpose Aluminum alloy is susceptible to chloride ion attack in sea water, resulting in pitting damage and hence serious security risks for the related applications. To improve the corrosion resistance of Al alloy, micro-arc oxidation (MAO) technology has been developed to produce a protective dense oxide layer on top of Al alloy. However, the mechanism of MAO-induced corrosion resistance is still not fully understood, particularly on local corrosion issue. This paper aims to focus on comprehensively studying the corrosion-resistance mechanism by a series of technologies. Design/methodology/approach The corrosion behavior of samples was studied by open circuit potential (OCP), potentiodynamic polarization (PDP), electrode impedance spectroscopy (EIS) and localized electrode impedance spectroscopy (LEIS) tests in NaCl solution. Findings The MAO-coated Al alloy shows a more positive corrosion potential and a higher corrosion current density compared to the untreated counterpart, indicating a significantly enhanced corrosion-resistance. The study of surface morphology and structure also suggest significantly enhanced corrosion-resistance due to the MAO treatment. Originality/value Based on the results, a new corrosion model was proposed to describe the influence of MAO treatment on the corrosion process and corrosion mechanism of Al alloy, providing insights on the design of the corrosion-resistance coating for metallic alloys in marine applications.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5210
Author(s):  
Brendan B. Murphy ◽  
Brittany H. Scheid ◽  
Quincy Hendricks ◽  
Nicholas V. Apollo ◽  
Brian Litt ◽  
...  

A low and stable impedance at the skin–electrode interface is key to high-fidelity acquisition of biosignals, both acutely and in the long term. However, recording quality is highly variable due to the complex nature of human skin. Here, we present an experimental and modeling framework to investigate the interfacial impedance behavior, and describe how skin interventions affect its stability over time. To illustrate this approach, we report experimental measurements on the skin–electrode impedance using pre-gelled, clinical-grade electrodes in healthy human subjects recorded over 24 h following four skin treatments: (i) mechanical abrasion, (ii) chemical exfoliation, (iii) microporation, and (iv) no treatment. In the immediate post-treatment period, mechanical abrasion yields the lowest initial impedance, whereas the other treatments provide modest improvement compared to untreated skin. After 24 h, however, the impedance becomes more uniform across all groups (<20 kΩ at 10 Hz). The impedance data are fitted with an equivalent circuit model of the complete skin–electrode interface, clearly identifying skin-level versus electrode-level contributions to the overall impedance. Using this model, we systematically investigate how time and treatment affect the impedance response, and show that removal of the superficial epidermal layers is essential to achieving a low, long-term stable interface impedance.


Sign in / Sign up

Export Citation Format

Share Document