Photoplethysmographic Subject Identification by Considering Feature Values Derived from Heartbeat and Respiration

Author(s):  
Shun Hinatsu ◽  
Daisuke Suzuki ◽  
Hiroki Ishizuka ◽  
Sei Ikeda ◽  
Osamu Oshiro
2019 ◽  
Vol XVI (4) ◽  
pp. 95-113
Author(s):  
Muhammad Tariq ◽  
Tahir Mehmood

Accurate detection, classification and mitigation of power quality (PQ) distortive events are of utmost importance for electrical utilities and corporations. An integrated mechanism is proposed in this paper for the identification of PQ distortive events. The proposed features are extracted from the waveforms of the distortive events using modified form of Stockwell’s transform. The categories of the distortive events were determined based on these feature values by applying extreme learning machine as an intelligent classifier. The proposed methodology was tested under the influence of both the noisy and noiseless environments on a database of seven thousand five hundred simulated waveforms of distortive events which classify fifteen types of PQ events such as impulses, interruptions, sags and swells, notches, oscillatory transients, harmonics, and flickering as single stage events with their possible integrations. The results of the analysis indicated satisfactory performance of the proposed method in terms of accuracy in classifying the events in addition to its reduced sensitivity under various noisy environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lorena Escudero Sanchez ◽  
Leonardo Rundo ◽  
Andrew B. Gill ◽  
Matthew Hoare ◽  
Eva Mendes Serrao ◽  
...  

AbstractRadiomic image features are becoming a promising non-invasive method to obtain quantitative measurements for tumour classification and therapy response assessment in oncological research. However, despite its increasingly established application, there is a need for standardisation criteria and further validation of feature robustness with respect to imaging acquisition parameters. In this paper, the robustness of radiomic features extracted from computed tomography (CT) images is evaluated for liver tumour and muscle, comparing the values of the features in images reconstructed with two different slice thicknesses of 2.0 mm and 5.0 mm. Novel approaches are presented to address the intrinsic dependencies of texture radiomic features, choosing the optimal number of grey levels and correcting for the dependency on volume. With the optimal values and corrections, feature values are compared across thicknesses to identify reproducible features. Normalisation using muscle regions is also described as an alternative approach. With either method, a large fraction of features (75–90%) was found to be highly robust (< 25% difference). The analyses were performed on a homogeneous CT dataset of 43 patients with hepatocellular carcinoma, and consistent results were obtained for both tumour and muscle tissue. Finally, recommended guidelines are included for radiomic studies using variable slice thickness.


Author(s):  
CHING-WEN CHEN ◽  
CHUNG-LIN HUANG

This paper presents a face recognition system which can identify the unknown identity effectively using the front-view facial features. In front-view facial feature extractions, we can capture the contours of eyes and mouth by the deformable template model because of their analytically describable shapes. However, the shapes of eyebrows, nostrils and face are difficult to model using a deformable template. We extract them by using the active contour model (snake). After the contours of all facial features have been captured, we calculate effective feature values from these extracted contours and construct databases for unknown identities classification. In the database generation phase, 12 models are photographed, and feature vectors are calculated for each portrait. In the identification phase if any one of these 12 persons has his picture taken again, the system can recognize his identity.


1989 ◽  
Vol 25 (1) ◽  
pp. 35-56 ◽  
Author(s):  
John Harris

Lexical Phonologists have made a number of claims that are directly relevant to the study of sound change in progress, two of which I wish to examine here. First, phonetically gradient patterns of variation are alleged to be controlled by rules which operate outside the lexicon. Second, phonological rules applying within the lexicon may only refer to feature values that are already marked in underlying representations. This paper sets out to test these claims against empirical data of the sort that have been reported in the sociolinguistic literature. While the first claim appears to be in tune with some informal analyses already offered by sociolinguists, the second is contradicted by at least some of the evidence.


2004 ◽  
Vol 05 (03) ◽  
pp. 313-327 ◽  
Author(s):  
Akihiro Miyakawa ◽  
Kaoru Sugita ◽  
Tomoyuki Ishida ◽  
Yoshitaka Shibata

In this paper, we propose a Kansei retrieval method based on the design pattern of traditional Japanese crafting object to provide a user with the desired presentation space in digital traditional Japanese crafting system. The visual quantitative feature values are extracted by using Visual Pattern Image Coding (VPIC). These values include the total number, the frequency, the dispersion rate and the deviation rate for different edges. The quantitative feature values for traditional Japanese crafting objects are registered in the multimedia database and the relation between Kansei words and the visual feature of traditional Japanese crafting objects are analyzed by using the questionnaire. Then, the visual features are compared with the quantitative feature values. Through the above process, we can find the relation between the design pattern components and edge types using VPIC. By finding this relation, the Kansei retrieval method can be realized.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4784 ◽  
Author(s):  
Chern-Sheng Lin ◽  
Shih-Hua Chen ◽  
Che-Ming Chang ◽  
Tsu-Wang Shen

In this study, an innovative, ensemble learning method in a dynamic imaging system of an unmanned vehicle is presented. The feasibility of the system was tested in the crack detection of a retaining wall in a climbing area or a mountain road. The unmanned vehicle can provide a lightweight and remote cruise routine with a Geographic Information System sensor, a Gyro sensor, and a charge-coupled device camera. The crack was the target to be tested, and the retaining wall was patrolled through the drone flight path setting, and then the horizontal image was instantly returned by using the wireless transmission of the system. That is based on the cascade classifier, and the feature comparison classifier was designed further, and then the machine vision correlation algorithm was used to analyze the target type information. First, the system collects the target image and background to establish the samples database, and then uses the Local Binary Patterns feature extraction algorithm to extract the feature values for classification. When the first stage classification is completed, the classification results are target features, and edge feature comparisons. The innovative ensemble learning classifier was used to analyze the image and determine the location of the crack for risk assessment.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Dockerill ◽  
W Woodward ◽  
A McCourt ◽  
A Beqiri ◽  
A Parker ◽  
...  

Abstract Background Stress echocardiography has become established as the most widely applied non-invasive imaging test for diagnosis of coronary artery disease within the UK. However, stress echocardiography has been substantially qualitative, rather than quantitative, based on visual wall motion assessment. For the first time, we have identified and validated quantitative descriptors of cardiac geometry and motion, extracted from ultrasound images acquired using contrast agents in an automated way. Purpose To establish whether these novel imaging features can be generated in an automated, quantifiable and reproducible way from images acquired with perfluoropropane contrast, as well as investigating how these extracted measures compare to those extracted from sulphur hexafluoride contrast and non-contrast studies. Methods 100 patients who received perfluoropropane contrast during their stress echocardiogram were recruited. Their stress echocardiography images were processed through a deep learning algorithm. Novel feature values were recorded and a subset of 10 studies were repeated. The automated measures of global longitudinal strain (GLS) and ejection fraction (EF) extracted from these images were compared to values previously extracted from sulphur hexafluoride contrast and non-contrast images using the same software. Results A full set of 31 novel imaging features were successfully extracted from 79 studies acquired using the perfluoropropane contrast agent with a dropout rate of 14% (n=92, 8 incomplete image sets). Repeated analysis in a subset of 10 perfluoropropane cases demonstrated excellent reproducibility of the extracted feature values (R2=1). Automated values of GLS and EF, at both rest (GLS = −16.4±4.8%, EF = 63±13%) and stress stages (GLS = −17.7±5.8%, EF = 68±11%), were extracted from 83 perfluoropropane studies, with a dropout rate of 16% (n=99, fewer incomplete sets as short axis view not required). The ranges of GLS and EF measures extracted from the perfluoropropane images were comparable to the other contrast studies (n=222) (Rest GLS = −16.8±5.8%, Rest EF = 63±10%; Stress GLS = −19.1±6.7%, Stress EF = 71±9%) and non-contrast studies (n=86) (Rest GLS = −15.7±5.3%, Rest EF = 57±10%; Stress GLS = −17.3±6.4%, Stress EF = 61±14%). Conclusions Novel features and clinically relevant measures were extracted from images acquired using perfluoropropane contrast for the first time in a fully automated and reproducible way using a deep learning algorithm. The analysis failure rate and generated measures are comparable to those extracted from images using other commonly used sulphur hexafluoride contrast agents and non-contrast stress echocardiography studies. These findings demonstrate that deep learning algorithms can be used for automated quantitative analysis of stress echocardiograms acquired using various contrast agents and in non-contrast studies to improve stress echocardiography practice. Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Lantheus Medical Imaging, Inc.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Hongliang Yu ◽  
◽  
Weiwei Wang ◽  
Shulin Duan ◽  
Peiting Sun ◽  
...  

The methane (CH4) burning interruption factor and the characteristic values characterizing the flame combustion state in the engine cylinder were defined. The logical mapping relationship between image feature values and combustion conditions in the framework of iconology was proposed. Results show that there are two periods of combustion instability and combustion stability during the combustion of dual fuel. The high temperature region with a cylinder temperature greater than 1800K is the largest at 17°CA after top dead center (TDC), accounting for 73.25% of the combustion chamber area. During the flame propagation, the radial flame velocity and the axial flame velocity are “unimodal” and “wavy,” respectively. During the combustion process, the CH4 burning interruption factor first increased and then decreased. The combustion duration in dual fuel mode is 21.25°CA, which is 15.5°CA shorter than the combustion duration in pure diesel mode.


Sign in / Sign up

Export Citation Format

Share Document