CathSym: Device and Method to Bring Haptic Feedback to Urinary Catheterization Training

Author(s):  
Nicholas Marjanovic ◽  
Cristian Luciano ◽  
Craig Niederberger
2018 ◽  
Author(s):  
Hellen van Rees ◽  
◽  
Angelika Mader ◽  
Merlijn Smits ◽  
Geke Ludden ◽  
...  

Author(s):  
E. Willuth ◽  
S. F. Hardon ◽  
F. Lang ◽  
C. M. Haney ◽  
E. A. Felinska ◽  
...  

Abstract Background Robotic-assisted surgery (RAS) potentially reduces workload and shortens the surgical learning curve compared to conventional laparoscopy (CL). The present study aimed to compare robotic-assisted cholecystectomy (RAC) to laparoscopic cholecystectomy (LC) in the initial learning phase for novices. Methods In a randomized crossover study, medical students (n = 40) in their clinical years performed both LC and RAC on a cadaveric porcine model. After standardized instructions and basic skill training, group 1 started with RAC and then performed LC, while group 2 started with LC and then performed RAC. The primary endpoint was surgical performance measured with Objective Structured Assessment of Technical Skills (OSATS) score, secondary endpoints included operating time, complications (liver damage, gallbladder perforations, vessel damage), force applied to tissue, and subjective workload assessment. Results Surgical performance was better for RAC than for LC for total OSATS (RAC = 77.4 ± 7.9 vs. LC = 73.8 ± 9.4; p = 0.025, global OSATS (RAC = 27.2 ± 1.0 vs. LC = 26.5 ± 1.6; p = 0.012, and task specific OSATS score (RAC = 50.5 ± 7.5 vs. LC = 47.1 ± 8.5; p = 0.037). There were less complications with RAC than with LC (10 (25.6%) vs. 26 (65.0%), p = 0.006) but no difference in operating times (RAC = 77.0 ± 15.3 vs. LC = 75.5 ± 15.3 min; p = 0.517). Force applied to tissue was similar. Students found RAC less physical demanding and less frustrating than LC. Conclusions Novices performed their first cholecystectomies with better performance and less complications with RAS than with CL, while operating time showed no differences. Students perceived less subjective workload for RAS than for CL. Unlike our expectations, the lack of haptic feedback on the robotic system did not lead to higher force application during RAC than LC and did not increase tissue damage. These results show potential advantages for RAS over CL for surgical novices while performing their first RAC and LC using an ex vivo cadaveric porcine model. Registration number researchregistry6029 Graphic abstract


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Maximilian Neidhardt ◽  
Nils Gessert ◽  
Tobias Gosau ◽  
Julia Kemmling ◽  
Susanne Feldhaus ◽  
...  

AbstractMinimally invasive robotic surgery offer benefits such as reduced physical trauma, faster recovery and lesser pain for the patient. For these procedures, visual and haptic feedback to the surgeon is crucial when operating surgical tools without line-of-sight with a robot. External force sensors are biased by friction at the tool shaft and thereby cannot estimate forces between tool tip and tissue. As an alternative, vision-based force estimation was proposed. Here, interaction forces are directly learned from deformation observed by an external imaging system. Recently, an approach based on optical coherence tomography and deep learning has shown promising results. However, most experiments are performed on ex-vivo tissue. In this work, we demonstrate that models trained on dead tissue do not perform well in in vivo data. We performed multiple experiments on a human tumor xenograft mouse model, both on in vivo, perfused tissue and dead tissue. We compared two deep learning models in different training scenarios. Training on perfused, in vivo data improved model performance by 24% for in vivo force estimation.


2021 ◽  
pp. 1-12
Author(s):  
Hamilton Hernandez ◽  
Isabelle Poitras ◽  
Linda Fay ◽  
Ajmal Khan ◽  
Jean-Sébastien Roy ◽  
...  

BACKGROUND: Video games can be used to motivate repetitive movements in paediatric rehabilitation. Most upper limb videogaming therapies do not however include haptic feedback which can limit their impact. OBJECTIVE: To explore the effectiveness of interactive computer play with haptic feedback for improving arm function in children with cerebral palsy (CP). METHODS: Eleven children with hemiplegic CP attended 12 therapist-guided sessions in which they used a gaming station composed of the Novint Falcon, custom-built handles, physical supports for the child’s arm, games, and an application to manage and calibrate therapeutic settings. Outcome measures included Quality of Upper Extremity Skills Test (QUEST) and Canadian Occupational Performance Measure (COPM). The study protocol is registered on clinicaltrials.gov (NCT04298411). RESULTS: Participants completed a mean of 3858 wrist extensions and 6665 elbow/shoulder movements during the therapist-guided sessions. Clinically important improvements were observed on the dissociated and grasp dimensions on the QUEST and the performance and satisfaction scales of the COPM (all p< 0.05). CONCLUSION: This study suggests that computer play with haptic feedback could be a useful and playful option to help improve the hand/arm capacities of children with CP and warrants further study. The opportunities and challenges of using low-cost, mainstream gaming software and hardware for therapeutic applications are discussed.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 60
Author(s):  
Eun-Hyuk Lee ◽  
Sang-Hoon Kim ◽  
Kwang-Seok Yun

Haptic displays have been developed to provide operators with rich tactile information using simple structures. In this study, a three-axis tactile actuator capable of thermal display was developed to deliver tactile senses more realistically and intuitively. The proposed haptic display uses pneumatic pressure to provide shear and normal tactile pressure through an inflation of the balloons inherent in the device. The device provides a lateral displacement of ±1.5 mm for shear haptic feedback and a vertical inflation of the balloon of up to 3.7 mm for normal haptic feedback. It is designed to deliver thermal feedback to the operator through the attachment of a heater to the finger stage of the device, in addition to mechanical haptic feedback. A custom-designed control module is employed to generate appropriate haptic feedback by computing signals from sensors or control computers. This control module has a manual gain control function to compensate for the force exerted on the device by the user’s fingers. Experimental results showed that it could improve the positional accuracy and linearity of the device and minimize hysteresis phenomena. The temperature of the device could be controlled by a pulse-width modulation signal from room temperature to 90 °C. Psychophysical experiments show that cognitive accuracy is affected by gain, and temperature is not significantly affected.


2021 ◽  
pp. 026921632198956
Author(s):  
Takahiro Higashibata ◽  
Takayuki Hisanaga ◽  
Shingo Hagiwara ◽  
Miho Shimokawa ◽  
Ritsuko Yabuki ◽  
...  

Background: Studies on the appropriate use of urinary catheters for cancer patients at the end of life are limited. Aim: To clarify the differences among institutions in the prevalence of and indications for urinary catheterization of advanced cancer patients at palliative care units. Design: Pre-planned secondary analysis of a multicenter, prospective cohort study; East-Asian collaborative cross-cultural Study to Elucidate the Dying process (EASED). Setting/participants: This study enrolled consecutive advanced cancer patients admitted to palliative care units between January and December 2017. The final study group comprised 1212 patients from 21 institutions throughout Japan. Results: Out of the 1212 patients, 380 (31.4%; 95% confidence interval, 28.7%–34.0%) underwent urinary catheterization during their palliative care unit stay, and the prevalence of urinary catheterization in patients who died at palliative care units by institution ranged from 0.0% to 55.4%. When the 21 participating institutions were equally divided into three groups according to the institutional prevalence of catheterization, patients with difficulty in moving safely, exhaustion on movement, and restlessness or agitation were more likely to be catheterized in institutions with a high prevalence of catheterization than in those with a low or moderate prevalence ( p < 0.008, p = 0.008, and p < 0.008, respectively). Conclusion: This study revealed that the institutional prevalence of urinary catheterization in advanced cancer patients at palliative care units widely varied. Further studies are needed to establish the appropriate use of urinary catheters, especially in patients with difficulty in moving safely, exhaustion on movement, and restlessness or agitation.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3673
Author(s):  
Stefan Grushko ◽  
Aleš Vysocký ◽  
Petr Oščádal ◽  
Michal Vocetka ◽  
Petr Novák ◽  
...  

In a collaborative scenario, the communication between humans and robots is a fundamental aspect to achieve good efficiency and ergonomics in the task execution. A lot of research has been made related to enabling a robot system to understand and predict human behaviour, allowing the robot to adapt its motion to avoid collisions with human workers. Assuming the production task has a high degree of variability, the robot’s movements can be difficult to predict, leading to a feeling of anxiety in the worker when the robot changes its trajectory and approaches since the worker has no information about the planned movement of the robot. Additionally, without information about the robot’s movement, the human worker cannot effectively plan own activity without forcing the robot to constantly replan its movement. We propose a novel approach to communicating the robot’s intentions to a human worker. The improvement to the collaboration is presented by introducing haptic feedback devices, whose task is to notify the human worker about the currently planned robot’s trajectory and changes in its status. In order to verify the effectiveness of the developed human-machine interface in the conditions of a shared collaborative workspace, a user study was designed and conducted among 16 participants, whose objective was to accurately recognise the goal position of the robot during its movement. Data collected during the experiment included both objective and subjective parameters. Statistically significant results of the experiment indicated that all the participants could improve their task completion time by over 45% and generally were more subjectively satisfied when completing the task with equipped haptic feedback devices. The results also suggest the usefulness of the developed notification system since it improved users’ awareness about the motion plan of the robot.


Sign in / Sign up

Export Citation Format

Share Document