scholarly journals Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3673
Author(s):  
Stefan Grushko ◽  
Aleš Vysocký ◽  
Petr Oščádal ◽  
Michal Vocetka ◽  
Petr Novák ◽  
...  

In a collaborative scenario, the communication between humans and robots is a fundamental aspect to achieve good efficiency and ergonomics in the task execution. A lot of research has been made related to enabling a robot system to understand and predict human behaviour, allowing the robot to adapt its motion to avoid collisions with human workers. Assuming the production task has a high degree of variability, the robot’s movements can be difficult to predict, leading to a feeling of anxiety in the worker when the robot changes its trajectory and approaches since the worker has no information about the planned movement of the robot. Additionally, without information about the robot’s movement, the human worker cannot effectively plan own activity without forcing the robot to constantly replan its movement. We propose a novel approach to communicating the robot’s intentions to a human worker. The improvement to the collaboration is presented by introducing haptic feedback devices, whose task is to notify the human worker about the currently planned robot’s trajectory and changes in its status. In order to verify the effectiveness of the developed human-machine interface in the conditions of a shared collaborative workspace, a user study was designed and conducted among 16 participants, whose objective was to accurately recognise the goal position of the robot during its movement. Data collected during the experiment included both objective and subjective parameters. Statistically significant results of the experiment indicated that all the participants could improve their task completion time by over 45% and generally were more subjectively satisfied when completing the task with equipped haptic feedback devices. The results also suggest the usefulness of the developed notification system since it improved users’ awareness about the motion plan of the robot.

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5748
Author(s):  
Stefan Grushko ◽  
Aleš Vysocký ◽  
Dominik Heczko ◽  
Zdenko Bobovský

In this work, we extend the previously proposed approach of improving mutual perception during human–robot collaboration by communicating the robot’s motion intentions and status to a human worker using hand-worn haptic feedback devices. The improvement is presented by introducing spatial tactile feedback, which provides the human worker with more intuitive information about the currently planned robot’s trajectory, given its spatial configuration. The enhanced feedback devices communicate directional information through activation of six tactors spatially organised to represent an orthogonal coordinate frame: the vibration activates on the side of the feedback device that is closest to the future path of the robot. To test the effectiveness of the improved human–machine interface, two user studies were prepared and conducted. The first study aimed to quantitatively evaluate the ease of differentiating activation of individual tactors of the notification devices. The second user study aimed to assess the overall usability of the enhanced notification mode for improving human awareness about the planned trajectory of a robot. The results of the first experiment allowed to identify the tactors for which vibration intensity was most often confused by users. The results of the second experiment showed that the enhanced notification system allowed the participants to complete the task faster and, in general, improved user awareness of the robot’s movement plan, according to both objective and subjective data. Moreover, the majority of participants (82%) favoured the improved notification system over its previous non-directional version and vision-based inspection.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Norma P. Rodríguez-Cándido ◽  
Rafael A. Espin-Andrade ◽  
Efrain Solares ◽  
Witold Pedrycz

This work presents a novel approach to prediction of financial asset prices. Its main contribution is the combination of compensatory fuzzy logic and the classical technical analysis to build an efficient prediction model. The interpretability properties of the model allow its users to incorporate and consider virtually any set of rules from technical analysis, in addition to the investors’ knowledge related to the actual market conditions. This knowledge can be incorporated into the model in the form of subjective assessments made by investors. Such assessments can be obtained, for example, from the graphical analysis commonly performed by traders. The effectiveness of the model was assessed through its systematic application in the stock and cryptocurrency markets. From the results, we conclude that when the model shows a high degree of recommendation, the actual financial assets show high effectiveness.


Author(s):  
Behnam Jahangiri ◽  
Punyaslok Rath ◽  
Hamed Majidifard ◽  
William G. Buttlar

Various agencies have begun to research and introduce performance-related specifications (PRS) for the design of modern asphalt paving mixtures. The focus of most recent studies has been directed toward simplified cracking test development and evaluation. In some cases, development and validation of PRS has been performed, building on these new tests, often by comparison of test values to accelerated pavement test studies and/or to limited field data. This study describes the findings of a comprehensive research project conducted at Illinois Tollway, leading to a PRS for the design of mainline and shoulder asphalt mixtures. A novel approach was developed, involving the systematic establishment of specification requirements based on: 1) selection of baseline values based on minimally acceptable field performance thresholds; 2) elevation of thresholds to account for differences between short-term lab aging and expected long-term field aging; 3) further elevation of thresholds to account for variability in lab testing, plus variability in the testing of field cores; and 4) final adjustment and rounding of thresholds based on a consensus process. After a thorough evaluation of different candidate cracking tests in the course of the project, the Disk-shaped Compact Tension—DC(T)—test was chosen to be retained in the Illinois Tollway PRS and to be presented in this study for the design of crack-resistant mixtures. The DC(T) test was selected because of its high degree of correlation with field results and its excellent repeatability. Tailored Hamburg rut depth and stripping inflection point thresholds were also established for mainline and shoulder mixes.


Author(s):  
Daniela Chanci ◽  
Naveen Madapana ◽  
Glebys Gonzalez ◽  
Juan Wachs

The choice of best gestures and commands for touchless interfaces is a critical step that determines the user- satisfaction and overall efficiency of surgeon computer interaction. In this regard, usability metrics such as task completion time, error rate, and memorability have a long-standing as potential entities in determining the best gesture vocabulary. In addition, some previous works concerned with this problem have utilized qualitative measures to identify the best gesture. In this work, we hypothesize that there is a correlation between the qualitative properties of gestures (v) and their usability metrics (u). Therefore, we conducted an experiment with linguists to quantify the properties of the gestures. Next, a user study was conducted with surgeons, and the usability metrics were measured. Lastly, linear and non-linear regression techniques were used to find the correlations between u and v. Results show that usability metrics are correlated with the gestures’ qualitative properties ( R2 = 0.4).


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1923-1933 ◽  
Author(s):  
Lorinda K Anderson ◽  
Naser Salameh ◽  
Hank W Bass ◽  
Lisa C Harper ◽  
W Z Cande ◽  
...  

Abstract Genetic linkage maps reveal the order of markers based on the frequency of recombination between markers during meiosis. Because the rate of recombination varies along chromosomes, it has been difficult to relate linkage maps to chromosome structure. Here we use cytological maps of crossing over based on recombination nodules (RNs) to predict the physical position of genetic markers on each of the 10 chromosomes of maize. This is possible because (1) all 10 maize chromosomes can be individually identified from spreads of synaptonemal complexes, (2) each RN corresponds to one crossover, and (3) the frequency of RNs on defined chromosomal segments can be converted to centimorgan values. We tested our predictions for chromosome 9 using seven genetically mapped, single-copy markers that were independently mapped on pachytene chromosomes using in situ hybridization. The correlation between predicted and observed locations was very strong (r2 = 0.996), indicating a virtual 1:1 correspondence. Thus, this new, high-resolution, cytogenetic map enables one to predict the chromosomal location of any genetically mapped marker in maize with a high degree of accuracy. This novel approach can be applied to other organisms as well.


2020 ◽  
Vol 4 (4) ◽  
pp. 78
Author(s):  
Andoni Rivera Pinto ◽  
Johan Kildal ◽  
Elena Lazkano

In the context of industrial production, a worker that wants to program a robot using the hand-guidance technique needs that the robot is available to be programmed and not in operation. This means that production with that robot is stopped during that time. A way around this constraint is to perform the same manual guidance steps on a holographic representation of the digital twin of the robot, using augmented reality technologies. However, this presents the limitation of a lack of tangibility of the visual holograms that the user tries to grab. We present an interface in which some of the tangibility is provided through ultrasound-based mid-air haptics actuation. We report a user study that evaluates the impact that the presence of such haptic feedback may have on a pick-and-place task of the wrist of a holographic robot arm which we found to be beneficial.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (S23) ◽  
pp. 10-13 ◽  
Author(s):  
Jeffrey H. Newcorn

Although the symptoms of attention-deficit/hyperactivity disorder (ADHD) can be found in many “normal” people, these symptoms are present to a greater extent in those affected by the disorder. In these patients, ADHD symptoms cause substantial functional impairment. Therefore, the goal of treatment is not simply to reduce core symptoms, but also to decrease the level of impairment caused by these symptoms.Common impairments in adolescents and adults include academic and occupational problems that are particularly evident in the context of tasks requiring a high degree of organization or attentional function. These impairments result in problems related to task completion, prioritizing work and other obligations, and time management, etc. These symptoms often impact successful completion of tasks in school or at work, and can also result in a variety of problems in initiating and managing relationships (Slide 1).Mood and anxiety disorders often co-occur with ADHD in adults. The accumulation of experiences related to impaired academic and/or occupational performance, and or persistent relationship problems, due to the symptoms of ADHD, can lead to either depressed mood or anxiety related to performance and/or social situations. Therefore, in treating adults with ADHD, reduction of those co-occurring symptom presentations is also an important goal.


2010 ◽  
Vol 6 (4) ◽  
pp. 341-354 ◽  
Author(s):  
Hui-Huang Hsu ◽  
Chien-Chen Chen

This research aimed at building an intelligent system that can detect abnormal behavior for the elderly at home. Active RFID tags can be deployed at home to help collect daily movement data of the elderly who carries an RFID reader. When the reader detects the signals from the tags, RSSI values that represent signal strength are obtained. The RSSI values are reversely related to the distance between the tags and the reader and they are recorded following the movement of the user. The movement patterns, not the exact locations, of the user are the major concern. With the movement data (RSSI values), the clustering technique is then used to build a personalized model of normal behavior. After the model is built, any incoming datum outside the model can be viewed as abnormal and an alarm can be raised by the system. In this paper, we present the system architecture for RFID data collection and preprocessing, clustering for anomaly detection, and experimental results. The results show that this novel approach is promising.


2021 ◽  
Vol 8 ◽  
Author(s):  
Min Li ◽  
Jiazhou Chen ◽  
Guoying He ◽  
Lei Cui ◽  
Chaoyang Chen ◽  
...  

Active enrollment in rehabilitation training yields better treatment outcomes. This paper introduces an exoskeleton-assisted hand rehabilitation system. It is the first attempt to combine fingertip cutaneous haptic stimulation with exoskeleton-assisted hand rehabilitation for training participation enhancement. For the first time, soft material 3D printing techniques are adopted to make soft pneumatic fingertip haptic feedback actuators to achieve cheaper and faster iterations of prototype designs with consistent quality. The fingertip haptic stimulation is synchronized with the motion of our hand exoskeleton. The contact force of the fingertips resulted from a virtual interaction with a glass of water was based on data collected from normal hand motions to grasp a glass of water. System characterization experiments were conducted and exoskeleton-assisted hand motion with and without the fingertip cutaneous haptic stimulation were compared in an experiment involving healthy human subjects. Users’ attention levels were monitored in the motion control process using a Brainlink EEG-recording device and software. The results of characterization experiments show that our created haptic actuators are lightweight (6.8 ± 0.23 g each with a PLA fixture and Velcro) and their performance is consistent and stable with small hysteresis. The user study experimental results show that participants had significantly higher attention levels with additional haptic stimulations compared to when only the exoskeleton was deployed; heavier stimulated grasping weight (a 300 g glass) was associated with significantly higher attention levels of the participants compared to when lighter stimulated grasping weight (a 150 g glass) was applied. We conclude that haptic stimulations increase the involvement level of human subjects during exoskeleton-assisted hand exercises. Potentially, the proposed exoskeleton-assisted hand rehabilitation with fingertip stimulation may better attract user’s attention during treatment.


2005 ◽  
Vol 14 (3) ◽  
pp. 345-365 ◽  
Author(s):  
Sangyoon Lee ◽  
Gaurav Sukhatme ◽  
Gerard Jounghyun Kim ◽  
Chan-Mo Park

The problem of teleoperating a mobile robot using shared autonomy is addressed: An onboard controller performs close-range obstacle avoidance while the operator uses the manipulandum of a haptic probe to designate the desired speed and rate of turn. Sensors on the robot are used to measure obstacle-range information. A strategy to convert such range information into forces is described, which are reflected to the operator's hand via the haptic probe. This haptic information provides feedback to the operator in addition to imagery from a front-facing camera mounted on the mobile robot. Extensive experiments with a user population both in virtual and in real environments show that this added haptic feedback significantly improves operator performance, as well as presence, in several ways (reduced collisions, increased minimum distance between the robot and obstacles, etc.) without a significant increase in navigation time.


Sign in / Sign up

Export Citation Format

Share Document