Evaluation of Energy Performance of road lighting system

Author(s):  
Jan Zalesak ◽  
Zuzana Pelanova
Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 202
Author(s):  
Gianluca Serale ◽  
Luca Gnoli ◽  
Emanuele Giraudo ◽  
Enrico Fabrizio

Artificial lighting systems are used in commercial greenhouses to ensure year-round yields. Current Light Emitting Diode (LED) technologies improved the system efficiency. Nevertheless, having artificial lighting systems extended for hectares with power densities over 50W/m2 causes energy and power demand of greenhouses to be really significant. The present paper introduces an innovative supervisory and predictive control strategy to optimize the energy performance of the artificial lights of greenhouses. The controller has been implemented in a multi-span plastic greenhouse located in North Italy. The proposed control strategy has been tested on a greenhouse of 1 hectare with a lighting system with a nominal power density of 50 Wm−2 requiring an overall power supply of 1 MW for a period of 80 days. The results have been compared with the data coming from another greenhouse of 1 hectare in the same conditions implementing a state-of-the-art strategy for artificial lighting control. Results outlines that potential 19.4% cost savings are achievable. Moreover, the algorithm can be used to transform the greenhouse in a viable source of energy flexibility for grid reliability.


An inverter is a circuit which converts the AC voltage into DC voltage. Current use of inverters is very large, especially in industries, offices and housing. Even though now there are many inverter markets, but many are used for household loads, no one uses an inverter for roads lighting system namely sodium lamp because it requires a high frequency and voltage Then the surveyors placed a single phase inverter from the sodium lamp. Single phase inverter tool designed produces a voltage of 10,000 V, Amperage current of 0.20 A and 2000 w Power when tested against overloaded and not overloaded inverter, the results are quite good but in the design and manufacture of a single phase inverter is still lacking, which is only able to start the initial lighting of the sodium lamp because the current is small and the resulting voltage is unstable. Keywords: Single phase inverter, electrical energy, public road lighting, sodium lamp.


2021 ◽  
Author(s):  
D. Gasparovsky ◽  
P. Janiga

Amongst many road lighting design criteria, energy performance plays an important role as it has a direct link to operational costs, potential reduction of carbon dioxide emissions, mitigation of obtrusive light, and its impact on the night-time environment in urban and con-urban settlements. The energy energy performance of road lighting is conveniently described by the pair of normative numerical indicators PDI and AECI established in European standards. This paper aims to present typical values of the AECI (Annual Energy Consumption Indicator) for different combinations of road arrangements, road widths, lighting classes and light source technologies to illustrate what benchmarks can be expected using this assessment system. Essential part of this paper is focusing on assessment of the performance for traffic intensity and traffic detection based lighting adaptation.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2169 ◽  
Author(s):  
Ana Ogando-Martínez ◽  
Javier López-Gómez ◽  
Lara Febrero-Garrido

This document addresses the development of a novel methodology to identify the actual maintenance factor of the luminaires of an outdoor lighting installation in order to assess their lighting performance. The method is based on the combined use of Radiance, a free and open-source tool, for the modeling and simulation of lighting scenes, and GenOpt, a generic optimization program, for the calibration of the model. The application of this methodology allows the quantification of the deterioration of the road lighting system and the identification of luminaires that show irregularities in their operation. Values lower than 9% for the error confirm that this research can contribute to the management of street lighting by assessing real road conditions.


2006 ◽  
Vol 20 (3) ◽  
pp. 165-174 ◽  
Author(s):  
N. C. Karmakar ◽  
M. Aruna ◽  
Y. V. Rao ◽  
U. K. R. Yaragatti

Sign in / Sign up

Export Citation Format

Share Document