Efficiency improvement of a DC-DC converter used in Series-Connected Boost Converters

Author(s):  
M. Mirsamadi ◽  
M. Taherbaneh ◽  
A.H. Rezaie
Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 689
Author(s):  
Luis Humberto Diaz-Saldierna ◽  
Jesus Leyva-Ramos

In this paper, a high step-up boost converter with a non-isolated configuration is proposed. This configuration has a quadratic voltage gain, suitable for processing energy from alternative sources. It consists of two boost converters, including a transfer capacitor connected in a non-series power transfer structure between input and output. High power efficiencies are achieved with this arrangement. Additionally, the converter has a common ground and non-pulsating input current. Design conditions and power efficiency analysis are developed. Bilinear and linear models are derived for control purposes. Experimental verification with a laboratory prototype of 500 W is provided. The proposed configuration and similar quadratic configurations are compared experimentally using the same number of components to demonstrate the power efficiency improvement. The resulting power efficiency of the prototype was above 95% at nominal load.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4252
Author(s):  
Shungang Xu ◽  
Kai Gao ◽  
Xiaobing Zhang ◽  
Kangle Li

In order to eliminate the voltage imbalance among battery cells when they are connected in series, the paper proposes a double-layer E-structure (DLE) equalizer based on bidirectional buck–boost converters, which has the advantage of quick equalization speed and can be applied to arbitrary number batteries. Furthermore, a novel two-stage equalization control strategy is proposed for the DLE equalizer to decrease maximum voltage gap between the maximum and minimum voltage cells. The paper analyses the working principle of proposed equalizer in detail and describes the detailed design of the control strategy and implement process. Simulation and experiment results show that the proposed equalizer can improve equalization performance of battery cells compared with adjacent cell-to-cell (AC2C) equalizer.


2018 ◽  
Vol 3 (1) ◽  
pp. 85-97 ◽  
Author(s):  
C. Prasanna Kumar ◽  
N. Venugopal

Abstract Interleaved boost converters (IBCs) are cascaded in parallel in most of the applications. This novel approach connects IBC in series cascade. The IBC has an optimal operating duty cycle of 0.5. Normally, photovoltaic source voltage is low because of space constraints. In order to boost the source voltage, a conventional boost converter is replaced with series-cascaded IBC in this paper. The single-stage IBC also boosts the voltage to twice the input voltage. In the proposed converter, output voltage is about four times the input voltage with the same 0.5 duty cycle. A mathematical model is developed and simulated for the proposed work in MATLAB/Simulink platform. The output of the proposed circuit is analysed through fast Fourier transform to know the harmonic content due to the switching. The system is tested for stability with signal-flow graph modelling. The proposed work is realised using hardware and tested to validate the model.


2021 ◽  
Vol 11 (13) ◽  
pp. 5993
Author(s):  
Vasile Mihai Suciu ◽  
Sorin Ionut Salcu ◽  
Alexandru Madalin Pacuraru ◽  
Lucian Nicolae Pintilie ◽  
Norbert Csaba Szekely ◽  
...  

This paper introduces a novel converter topology based on an independent controlled double-boost configuration. The structure was achieved by combining two independent classic boost converters connected in parallel at the input and in series at the output. Through proper control of the two boost converters, an interleaved topology was obtained, which presents a low ripple for the input current. Being connected in series at the output, a three-level structure was attained with twice the voltage gain of classic boost and interleaved topologies. A significant feature of the proposed converter is the possibility of independent operation of the two integrated boost converters, in both symmetrical and asymmetrical modes. This feature may be particularly useful in voltage balancing or interconnection with bipolar DC grids/applications. The operation principle, simulations, mathematical analysis, and laboratory prototype experimental results are presented.


Author(s):  
Priyanka R ◽  
Shanmugalakshmi R

In recent days there is a vast development in the field of power electronic converters. Necessity of multiple level of voltage demand is raised for single supply system. To meet different level of load demand single input and multiple output topologies (SIMO) are created. There are many such converters fall under SIMO converters. The Integrated Dual Output Converter (IDOC) is one among them. The IDOC is a DC-DC converter that performs boost and buck operations simultaneously with a single input. It is basically evolved from boost converter, replacing a single switch by couple of switches. Both the switches are connected in series not only to perform both buck and boost operation but also to provide continuous input current. Main advantage of IDOC over conventional boost and buck converter is the reduced number of switches. Comparisons among another six buck-boost converters and the proposed IDOC converter are presented. It is found that the proposed converter’s voltage gain is smaller than the other converters’ in step-down mode.  Also, based upon the comparisons among the same kind and same number of components, the voltage and current stresses on the power switch of the proposed IDOC converter are less than or equal to those of the comparative converters, and the voltage stress on the charge pump capacitor and the switching device power rating of the proposed IDOC converter are always lower than those of other comparative converters. These advantages make component selection for the proposed converter much easier, and it can be used for industrial application. In order to check the behavior of the converter simulation is carried out in a MATLAB/SIMULINK. The simulation results validated the operation of the converter.


Author(s):  
Xiaogang Wu ◽  
Boyang Yu ◽  
Jiuyu Du ◽  
Wenwen Shi

Intended for the high voltage gain and wide-range operation of DC/DC converters for photovoltaic energy storage systems, a topology for four-phase interleaved DC/DC converters for photovoltaic power generation is proposed. This topology increases output voltage for output in series, and reduces the input current ripple by paralleling the input. Compared with traditional boost converter topology, the proposed topology reduces the output current and output voltage ripple, reduces the stress of the switching device, and reduces the withstanding voltage of the output capacitor under the premise of ensuring the boost ratio. Experimental results show that the maximum efficiency of the converter reaches 95.37%. Compared with traditional boost converters, the proposed converter offers obvious advantages in efficiency under the conditions that the output voltage and load are variable.


2020 ◽  
Vol 63 (9) ◽  
pp. 2921-2929
Author(s):  
Alan H. Shikani ◽  
Elamin M. Elamin ◽  
Andrew C. Miller

Purpose Tracheostomy patients face many adversities including loss of phonation and essential airway functions including air filtering, warming, and humidification. Heat and moisture exchangers (HMEs) facilitate humidification and filtering of inspired air. The Shikani HME (S-HME) is a novel turbulent airflow HME that may be used in-line with the Shikani Speaking Valve (SSV), allowing for uniquely preserved phonation during humidification. The aims of this study were to (a) compare the airflow resistance ( R airflow ) and humidification efficiency of the S-HME and the Mallinckrodt Tracheolife II tracheostomy HME (M-HME) when dry (time zero) and wet (after 24 hr) and (b) determine if in-line application of the S-HME with a tracheostomy speaking valve significantly increases R airflow over a tracheostomy speaking valve alone (whether SSV or Passy Muir Valve [PMV]). Method A prospective observational ex vivo study was conducted using a pneumotachometer lung simulation unit to measure airflow ( Q ) amplitude and R airflow , as indicated by a pressure drop ( P Drop ) across the device (S-HME, M-HME, SSV + S-HME, and PMV). Additionally, P Drop was studied for the S-HME and M-HME when dry at time zero (T 0 ) and after 24 hr of moisture testing (T 24 ) at Q of 0.5, 1, and 1.5 L/s. Results R airflow was significantly less for the S-HME than M-HME (T 0 and T 24 ). R airflow of the SSV + S-HME in series did not significant increase R airflow over the SSV or PMV alone. Moisture loss efficiency trended toward greater efficiency for the S-HME; however, the difference was not statistically significant. Conclusions The turbulent flow S-HME provides heat and moisture exchange with similar or greater efficacy than the widely used laminar airflow M-HME, but with significantly lower resistance. The S-HME also allows the innovative advantage of in-line use with the SSV, hence allowing concurrent humidification and phonation during application, without having to manipulate either device.


Sign in / Sign up

Export Citation Format

Share Document