Optimal sizing and location determination of distributed generation in distribution networks

Author(s):  
S K Saha ◽  
S Banerjee ◽  
D Maity ◽  
C K Chanda
Author(s):  
Sunny Katyara ◽  
Lukasz Staszewski ◽  
Faheem Akhtar Chachar

Background: Since the distribution networks are passive until Distributed Generation (DG) is not being installed into them, the stability issues occur in the distribution system after the integration of DG. Methods: In order to assure the simplicity during the calculations, many approximations have been proposed for finding the system’s parameters i.e. Voltage, active and reactive powers and load angle, more efficiently and accurately. This research presents an algorithm for finding the Norton’s equivalent model of distribution system with DG, considering from receiving end. Norton’s model of distribution system can be determined either from its complete configuration or through an algorithm using system’s voltage and current profiles. The algorithm involves the determination of derivative of apparent power against the current (dS/dIL) of the system. Results: This work also verifies the accuracy of proposed algorithm according to the relative variations in the phase angle of system’s impedance. This research also considers the varying states of distribution system due to switching in and out of DG and therefore Norton’s model needs to be updated accordingly. Conclusion: The efficacy of the proposed algorithm is verified through MATLAB simulation results under two scenarios, (i) normal condition and (ii) faulty condition. During normal condition, the stability factor near to 1 and change in dS/dIL was near to 0 while during fault condition, the stability factor was higher than 1 and the value of dS/dIL was away from 0.


2019 ◽  
Vol 9 (17) ◽  
pp. 3501 ◽  
Author(s):  
Vasiliki Vita ◽  
Stavros Lazarou ◽  
Christos A. Christodoulou ◽  
George Seritan

This paper proposes a calculation algorithm that creates operational points and evaluates the performance of distribution lines after reinforcement. The operational points of the line are probabilistically determined using Monte Carlo simulation for several objective functions for a given line. It is assumed that minimum voltage at all nodes has to be balanced to the maximum load served under variable distributed generation production, and to the energy produced from the intermittent renewables. The calculated maximum load, which is higher than the current load, is expected to cover the expected needs for electric vehicles charging. Following the proposed operational patterns, it is possible to have always maximum line capacity. This method is able to offer several benefits. It facilitates of network planning and the estimation of network robustness. It can be used as a tool for network planners, operators and large users. It applies to any type of network including radial and meshed.


Sign in / Sign up

Export Citation Format

Share Document