Design Guidelines for Linear Amplification and Low-insertion Loss in 5-GHz-band SOI Power MOSFETs

Author(s):  
S. Matsumoto ◽  
Y. Hiraoka ◽  
M. Mino
Author(s):  
Norhudah Seman ◽  
Dyg Norkhairunisa Abang Zaidel ◽  
Zuhaili Amalina Abd. Wahid ◽  
Nor Azimah Mohd Shukor ◽  
Tharek Abd Rahman

<p>This paper proposes a compact size design of wideband bandpass filter (BPF). The broad-side coupling microstrip-slot technique is used to accomplish a good passband response with very low insertion loss across a wideband frequency range. The BPF that is designed using Rogers RO4003C substrate shows a good performance with the respective maximum reflection coefficient and insertion loss of -10 dB and 1.2 dB between 0.92 GHz and 5 GHz. This type of BPF filter is useful in any communication applications.</p>


Author(s):  
Aparna B. Barbadekar ◽  
Pradeep M. Patil

Abstract The paper proposes a system consisting of novel programmable system on chip (PSoC)-controlled phase shifters which in turn guides the beam of an antenna array attached to it. Four antennae forming an array receive individual inputs from the programmable phase shifters (IC 2484). The input to the PSoC-based phase shifter is provided from an optimized 1:4 Wilkinson power divider. The antenna consists of an inverted L-shaped dipole on the front and two mirrored inverted L-shaped dipoles mounted on a rectangular conductive structure on the back which resonates in the ISM/Wi-Fi band (2.40–2.48 GHz). The power divider is designed to provide the feed to the phase shifter using a beamforming network while ensuring good isolation among the ports. The power divider has measured S11, S21, S31, S41, and S51 to be −14, −6.25, −6.31, −6.28, and −6.31 dB, respectively at a frequency of 2.45 GHz. The ingenious controller is designed in-house using a PSoC microcontroller to regulate the control voltage of individual phase shifter IC and generate progressive phase shifts. To validate the calibration of the in-house designed control circuit, the phased array is simulated using $s_p^2$ touchstone file of IC 2484. This designed control circuit exhibits low insertion loss close to −8.5 dB, voltage standing wave ratio of 1.58:1, and reflection coefficient (S11) is −14.36 dB at 2.45 GHz. Low insertion loss variations confirm that the phased-array antenna gives equal amplitude and phase. The beamforming radiation patterns for different scan angles (30, 60, and 90°) for experimental and simulated phased-array antenna are matched accurately showing the accuracy of the control circuit designed. The average experimental and simulated gain is 13.03 and 13.48 dBi respectively. The in-house designed controller overcomes the primary limitations associated with the present electromechanical phased array such as cost weight, size, power consumption, and complexity in design which limits the use of a phased array to military applications only. The current study with novel design and enhanced performance makes the system worthy of the practical use of phased-array antennas for common society at large.


Optik ◽  
2019 ◽  
Vol 194 ◽  
pp. 163069 ◽  
Author(s):  
Kawsar Ahmed ◽  
Md. Ferdous ◽  
Md. Nazmul Hossen ◽  
Bikash Kumar Paul ◽  
I.S. Amiri ◽  
...  

2014 ◽  
Vol 11 (9) ◽  
pp. 20140216-20140216 ◽  
Author(s):  
Yanlong Zhang ◽  
Yiqi Zhuang ◽  
Zhenrong Li ◽  
Xing Quan ◽  
Xiaojiao Ren

Sign in / Sign up

Export Citation Format

Share Document