scholarly journals Compact Wideband Broadside-Coupled Microstrip-Slot Bandpass Filter for Communication Applications

Author(s):  
Norhudah Seman ◽  
Dyg Norkhairunisa Abang Zaidel ◽  
Zuhaili Amalina Abd. Wahid ◽  
Nor Azimah Mohd Shukor ◽  
Tharek Abd Rahman

<p>This paper proposes a compact size design of wideband bandpass filter (BPF). The broad-side coupling microstrip-slot technique is used to accomplish a good passband response with very low insertion loss across a wideband frequency range. The BPF that is designed using Rogers RO4003C substrate shows a good performance with the respective maximum reflection coefficient and insertion loss of -10 dB and 1.2 dB between 0.92 GHz and 5 GHz. This type of BPF filter is useful in any communication applications.</p>

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yong Mao Huang ◽  
Zhenhai Shao ◽  
Zhaosheng He ◽  
Chang Jiang You ◽  
Di Jiang

A half mode substrate integrated waveguide-to-defected ground structure (HMSIW-DGS) cell and its embedded form are proposed to miniaturize a bandpass filter. Both cells can purchase wideband frequency response and low insertion loss, as well as simple and easy fabrication. By cascading two of them according to design requirement, an X-band bandpass filter is designed and measured to meet compact size, low insertion loss, good return loss, second harmonic suppression, and linear phase.


Frequenz ◽  
2018 ◽  
Vol 72 (11-12) ◽  
pp. 533-537 ◽  
Author(s):  
Jin Xu ◽  
Qi-Hang Cai ◽  
Zhi-Yu Chen

Abstract This paper proposes a wideband bandpass filter (BPF) integrated single-pole double-throw (SPDT) switch by using the capacitively coupled LC resonators with loaded p-i-n diodes. The BPF-integrated on-state channel can be synthesized by using the coupled resonator filter theory, and the off-state channel with high suppression is built due to the misaligned resonant frequencies of LC resonators. As an example, a BPF-integrated SPDT switch is designed and fabricated with the central frequency of 1 GHz and the 3 dB fractional bandwidth of 29.7 %. The on-state channel has a measured insertion loss of 1.23 dB, and a 20 dB rejection wide stopband from 1.47 GHz to 8.6 GHz. The off state channel has a 43 dB suppression around 1 GHz. The isolation between two ports is better than 52.4 dB. The fabricated BPF-integrated SPDT switch size including bias circuits but excluding feeding lines has a compact size of 0.086 λg×0.096 λg.


2019 ◽  
Vol 4 (7) ◽  
pp. 28-30
Author(s):  
William Johnson ◽  
Cavin Roger Nunes ◽  
Savio Sebastian Dias ◽  
Siddhi Suresh Parab ◽  
Varsha Shantaram Hatkar

In this paper, a dual band microstrip bandpass filter has been proposed utilizing three edge coupled resonators, interdigital stubs and DGS technique. To enhance the coupling degree, two interdigital coupled feed lines are employed in this filter. The suppressing cell consists of stepped impedance ladder type resonators, which provides a wide stopband. The proposed suppressing cell has clear advantages like low insertion loss in the passband and suitable roll off. The frequency response of the filter looks like a standard dual band band-pass filter. The filter exhibits a dual passband with resonant frequencies at 2.2GHz and 3.45GHz covers LTE1 and LTE22 bands.


Frequenz ◽  
2016 ◽  
Vol 70 (9-10) ◽  
Author(s):  
Chuanming Zhu ◽  
Jin Xu ◽  
Wei Kang ◽  
Zhenxin Hu ◽  
Wen Wu

AbstractIn this paper, a miniaturized dual-band bandpass filter (DB-BPF) using embedded dual-mode resonator (DMR) with controllable bandwidths is proposed. Two passbands are generated by two sets of resonators operating at two different frequencies. One set of resonators is utilized not only as the resonant elements that yield the lower passband, but also as the feeding structures with source-load coupling to excite the other to produce the upper passband. Sufficient degrees of freedom are achieved to control the center frequencies and bandwidths of two passbands. Moreover, multiple transmission zeros (TZs) are created to improve the passband selectivity of the filter. The design of the filter has been demonstrated by the measurement. The filter features not only miniaturized circuit sizes, low insertion loss, independently controllable central frequencies, but also controllable bandwidths and TZs.


2021 ◽  
Vol 36 (7) ◽  
pp. 865-871
Author(s):  
Jin Shi ◽  
Jiancheng Dong ◽  
Kai Xu ◽  
Lingyan Zhang

A novel miniaturized wideband bandpass filter (BPF) using capacitor-loaded microstrip coupled line is proposed. The capacitors are loaded in parallel and series to the coupled line, which makes the filter just require one one-eighth wavelength coupled line and achieve filtering response with multiple transmission poles (TPs) and transmission zeros (TZs). Compared with the state-of-the-art microstrip wideband BPFs, the proposed filter has the advantages of compact size and simple structure. A prototype centered at 1.47 GHz with the 3-dB fractional bandwidth of 86.5% is demonstrated, which exhibits the compact size of 0.003λ2 g (λg is the guided wavelength at the center frequency) and the minimum insertion loss of 0.37 dB.


Sign in / Sign up

Export Citation Format

Share Document