Improvement of the digital control of a high speed PMSM for vehicle application

Author(s):  
Leopold Sepulchre ◽  
Maurice Fadel ◽  
Maria Pietrzak-David
Keyword(s):  
2011 ◽  
Vol 57 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Konrad Skup ◽  
Paweł Grudziński ◽  
Piotr Orleański

Application of Digital Control Techniques for Satellite Medium Power DC-DC Converters The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter is based on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage and current mode stabilization that was implemented using VHDL. The described controllers are based on a classical digital PID controller. The converter used for testing is a 200 kHz, 750W buck converter with 50V/15A output. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2863
Author(s):  
Yujie Guo ◽  
Fang Yuan ◽  
Yukuan Chang ◽  
Yuxia Kou ◽  
Xu Zhang

This article proposes a high-frequency, area-efficient high-side bootstrap circuit with threshold-based digital control (TBDC) that is directly charged by BUS voltage (DCBV). In the circuit, the voltage of the bootstrap is directly obtained from the BUS voltage instead of the on-chip low dropout regulator (LDO), which is more suitable for a high operating frequency. An area-efficient threshold-based digital control structure is used to detect the bootstrap voltage, thereby effectively preventing bootstrap under-voltage or over-voltage that may result in insufficient driving capability, increased loss, or breakdown of the power device. The design and implementation of the circuit are based on CSMC 0.25 µm 60 V BCD technology, with an overall chip area of 1.4 × 1.3 mm2, of which the bootstrap area is 0.149 mm2 and the figure-of-merit (FOM) is 0.074. The experimental results suggest that the bootstrap circuit can normally operate at 5 MHz with a maximum buck converter efficiency of 83.6%. This work plays a vital role in promoting the development of a wide range of new products and new technologies, such as integrated power supplies, new energy vehicles, and data storage centers.


Sign in / Sign up

Export Citation Format

Share Document