Implementing high speed communication buses for a FPGA-DSP architecture for digital control of power electronics

Author(s):  
Carlos Giron ◽  
Francisco Javier Rodriguez ◽  
Francisco Huerta ◽  
Emilio Bueno
2011 ◽  
Vol 57 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Konrad Skup ◽  
Paweł Grudziński ◽  
Piotr Orleański

Application of Digital Control Techniques for Satellite Medium Power DC-DC Converters The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter is based on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage and current mode stabilization that was implemented using VHDL. The described controllers are based on a classical digital PID controller. The converter used for testing is a 200 kHz, 750W buck converter with 50V/15A output. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000344-000359
Author(s):  
Evan A. Hueners ◽  
Richard D. Hueners ◽  
Anthony D. F. O' Sullivan ◽  
M. Redzuan Zin

Abstract Energy & Eco-Sustainability using Pressureless Silver Sintering for RF Power Electronics A virtually void free die attach was successfully achieved using a fixed but critical volume of Ag sinter paste by a process of pressureless sintering on a multi-axis cartesian style bonder, retro-fitted with with a high-speed jetting dispenser. While this process potentially offered an ideal combination of cost-effectiveness, control and speed, it required the development of additional software protocols to secure the level of performance demanded of the dispenser to meet exacting technical requirements. This proprietary adaptation we term “Fixed BLT” software, and over five test pieces we were consistently able to deliver a fixed height bond-line of circa 70% of bond height, translating as 50 um before sinter and 30 um after. In each case the result was a virtually bond free void secured in a timely, repeatable, commercially effective manner. The absence of voids was verified through industry standard non-destructive analysis utilizing confocal scanning acoustic microscopy (CSAM).


Sign in / Sign up

Export Citation Format

Share Document