Piezoelectric Based Smart Tire for Vehicle Speed and Load Detection and Energy Harvesting

Author(s):  
Zhipeng Sui ◽  
Zihao Wang ◽  
Xujia Zhang ◽  
Sizhe Zhang ◽  
Zidi Zhong ◽  
...  
Author(s):  
Farbod Khameneifar ◽  
Siamak Arzanpour

The concept of harvesting energy in our surrounding has recently drawn global attention. Harvesting the ambient energy of the deflected tire and convert it to electricity is discussed in this paper. An Elastic pneumatic tire deflects due to the load it carries. This deflection appears as a contact patch to the road surface. Initially, the concept of the tire deflection will be discussed. This deflection is then related to the wasted energy used for deflection. The dependency of this energy to some important parameters such as the tire air pressure, vehicle speed and tire geometry and forces are primarily discussed. To harvest the deflection energy different well established methods are exists. Due to the tire environment, piezoelectric transducers can serve as the best option. Those transducers are traditionally used to produce mechanical motion due to the applied electrical charges. This material is also capable of generating electrical charges by mechanical motion and deflections. For the tire energy harvesting application, the piezoelectric stacks can be mounted inside a tire structure such that electric charge is generated therein as the wheel assembly moves along a ground surface. For this application, lead-zirconate-titanate (PZT) is selected. The PZT inside the tire is modeled as a cantilever beam vibration in its first mode of vibration. The frequency of vibration is calculated based on the car speed, tire size, and PZT stack length. A mathematical model for this energy harvesting application is derived. Based on this model, the optimum load of the electrical circuit is also found. Finally the amount of energy harvested from tire using PZT is calculated. Although this energy is not significantly high, it will be enough to provide power for wireless sensors applications.


Author(s):  
Abbas F. Jasim ◽  
Hao Wang ◽  
Greg Yesner ◽  
Ahmad Safari ◽  
Pat Szary

This study investigated the energy harvesting performance of a piezoelectric module in asphalt pavements through laboratory testing and multi-physics based simulation. The energy harvester module was assembled with layers of Bridge transducers and tested in the laboratory. A decoupled approach was used to study the interaction between the energy harvester and the surrounding pavement. The effects of embedment location, vehicle speed, and temperature on energy harvesting performance were investigated. The analysis findings indicate that the embedment location and vehicle speed affects the resulted power output of the piezoelectric energy harvesting system. The embedment depth of the energy module affects both the magnitude and frequency of stress pulse on top of the energy module induced by tire loading. On the other hand, higher vehicle speed causes greater loading frequency and thus greater power output; the effect of pavement temperature is negligible. The analysis of total power output before reaching fatigue failure of the energy module can be used to determine the optimum embedment location in the asphalt layer. The proposed energy harvesting system provides great potential to generate green energy from waste kinetic energy in roadway pavements. Field study is recommended to verify these findings with long-term performance monitoring of pavement with embedded energy harvesters.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhen Zhao ◽  
Tie Wang ◽  
Baifu Zhang ◽  
Jinhong Shi

In this paper, a new type of piezoelectric harvester for vehicle suspension systems is designed and presented that addresses the current problems of low energy density, vibration energy dissipation, and reduced energy harvesting efficiency in current technologies. A new dual-mass, two degrees of freedom (2-DOF), suspension dynamic model for the harvester was developed for the inertial mass and the force of the energy conversion component by combining with the piezoelectric power generation model, the rotor dynamics model, and the traditional 2-DOF suspension model. The influence of factors such as vehicle speed, the parameters of the harvester, and road classification on the root mean square (RMS) of the generated electric power is discussed. The results show that the RMS increases with the increase of the speed of the vehicle, the thickness and length of piezoelectric patches and magnetic slabs, and the residual flux density of magnets and road roughness coefficient and with the decrease of the width of piezoelectric patches and magnetic slabs and the space between the stator ring and the rotator ring. In the present research, a power of up to 332.4 W was harvested. The proposed model provides a powerful reference for future studies of energy harvesting from vehicle suspension systems.


Author(s):  
A. Dompierre ◽  
M. S. Traore ◽  
L. G. Fréchette

This work presents a study of car vibrations measured under typical driving conditions to assess the potential of powering automotive sensors incorporated in cars via vibration energy harvesting (VEH). The locations where sensors or switches are currently used and the requirements of potential automotive wireless sensor nodes were used as criteria to narrow down the location of the measurements. A total of 20 locations were retained after keeping the sensors with lower requirements. Random vibrations due to the road perturbations as well as part of the structural responses of the vehicle from changing vehicle speed were observed through vibration peaks which shift in frequency and others which are steady despite the changing conditions. The spectral analyses indicate that most of the available vibration energy is in a frequency range below 200 Hz, with harvestable consistent peaks below 140 Hz on the front chassis, the rear and front plastic bumpers and the brake fluid tank. An analytical model is used to assess the power output from several linear harvester MEMS designs and we estimate that continuous power over 100 nW are achievable from those sources.


Author(s):  
Liangyao Yu ◽  
Xuhui Liu ◽  
Liangxu Ma ◽  
Lei Zuo ◽  
Jian Song

Brake-by-wire system is a more compact, more efficient brake system using electromechanical actuators instead of conventional hydraulic actuators. Magneto-rheological (MR) fluid is widely used in damping control due to its outstanding controllable properties. In this paper, an MR based Brake-by-wire system with self-energizing and brake energy harvesting capability was proposed and designed. It combined a typical single-disk-type MR brake with a wedge mechanism for self-energizing purpose, and a generator is employed to conduct regenerative braking and harvest brake energy. The MR brake and generator are located at the inner side of the wheel rim and coupled by compact linkage and axle mechanism. According to the torque analysis of the proposed MR brake, the brake torque was significantly amplified, which means MR fluid can be applied in automotive Brake-by-Wire system with less power consumption. Meanwhile, about 46W output power of the generator can be achieved when braking at an initial vehicle speed of 50km/h. Using a DC/DC convertor, the output power can be used to power the MR brake control circuit or other in-vehicle electronic devices, or charge the on-board low-voltage battery. Simulation results are given according to the proposed design.


Author(s):  
Lei Zuo ◽  
Pei-Sheng Zhang

This paper presents a comprehensive assessment of the power that is available for harvesting in the vehicle suspension system and the tradeoff among energy harvesting, ride comfort, and road handing with analysis, simulations and experiments. The excitation from road irregularity is modeled as a stationary random process with road roughness suggested in the ISO standard. The concept of system H2 norm is used to obtain mean value of power generation and the root mean square values of vehicle body acceleration (ride quality) and dynamic tire-ground contact force (road handling). For a quarter car model, analytical solution of the mean power is obtained. The influence of road roughness, vehicle speed, suspension stiffness, shock absorber damping, tire stiffness, wheel and chasses masses to the vehicle performances and harvestable power are studied. Experiments are carried out to verify the theoretical analysis. The results suggest that road roughness, tire stiffness, and vehicle driving speed have great influence to the harvesting power potential, where the suspension stiffness, absorber damping, vehicle masses are insensitive. At 60mph on good and average roads 100–400 watts average power is available in the suspensions of a middle-size vehicle.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2012 ◽  
Vol 2 (5) ◽  
pp. 252-255
Author(s):  
Rudresha K J Rudresha K J ◽  
◽  
Girisha G K Girisha G K

Sign in / Sign up

Export Citation Format

Share Document