scholarly journals Accurate Power Consumption Evaluation for Peripherals in Ultra Low-Power embedded systems

Author(s):  
Gautier Berthou ◽  
Kevin Marquet ◽  
Tanguy Risset ◽  
Guillaume Salagnac
2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Nano Letters ◽  
2013 ◽  
Vol 13 (4) ◽  
pp. 1451-1456 ◽  
Author(s):  
T. Barois ◽  
A. Ayari ◽  
P. Vincent ◽  
S. Perisanu ◽  
P. Poncharal ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 889
Author(s):  
Xiaoying Deng ◽  
Peiqi Tan

An ultra-low-power K-band LC-VCO (voltage-controlled oscillator) with a wide tuning range is proposed in this paper. Based on the current-reuse topology, a dynamic back-gate-biasing technique is utilized to reduce power consumption and increase tuning range. With this technique, small dimension cross-coupled pairs are allowed, reducing parasitic capacitors and power consumption. Implemented in SMIC 55 nm 1P7M CMOS process, the proposed VCO achieves a frequency tuning range of 19.1% from 22.2 GHz to 26.9 GHz, consuming only 1.9 mW–2.1 mW from 1.2 V supply and occupying a core area of 0.043 mm2. The phase noise ranges from −107.1 dBC/HZ to −101.9 dBc/Hz at 1 MHz offset over the whole tuning range, while the total harmonic distortion (THD) and output power achieve −40.6 dB and −2.9 dBm, respectively.


2015 ◽  
Vol 654 ◽  
pp. 88-93
Author(s):  
Hideyuki Negishi

Although conventional organic solvents are used in electrophoretic deposition (EPD) owing to several advantages, they are hazardous because of their inflammability or ignition properties. In contrast, hydrofluoro ether (HFE) is nonflammable, polar and possesses excellent electrical insulation properties. In this study, methoxy-nonafluorobutane (MNFB), which is one of HFE was used as the solvent for the EPD of silica powder. Because the density of MNFB is larger than water, sedimentation of inorganic particles is slow. The deposition behavior in MNFB was similar to the EPD in conventional solvents, and was controlled by tuning the applied voltage, deposition time, and particle concentration. A uniform coating was obtained. Notably, the power consumed in this process was significantly lower than that in the EPD using conventional solvents. The current density was of the order of 10 nA/cm2; therefore, the electric power consumption for EPD using MNFB was less than 0.1% of those using conventional solvents. Therefore, MNFB can be used as an effective solvent for EPD because it is nonflammable, allows the application of high voltage, and enables the deposition of particles with low power consumption.


Sign in / Sign up

Export Citation Format

Share Document