Machine learning approaches to Information Retrieval and its applications to the web, medical informatics and health care

Author(s):  
Xiangji Huang
2021 ◽  
pp. 002073142110174
Author(s):  
Md Mijanur Rahman ◽  
Fatema Khatun ◽  
Ashik Uzzaman ◽  
Sadia Islam Sami ◽  
Md Al-Amin Bhuiyan ◽  
...  

The novel coronavirus disease (COVID-19) has spread over 219 countries of the globe as a pandemic, creating alarming impacts on health care, socioeconomic environments, and international relationships. The principal objective of the study is to provide the current technological aspects of artificial intelligence (AI) and other relevant technologies and their implications for confronting COVID-19 and preventing the pandemic’s dreadful effects. This article presents AI approaches that have significant contributions in the fields of health care, then highlights and categorizes their applications in confronting COVID-19, such as detection and diagnosis, data analysis and treatment procedures, research and drug development, social control and services, and the prediction of outbreaks. The study addresses the link between the technologies and the epidemics as well as the potential impacts of technology in health care with the introduction of machine learning and natural language processing tools. It is expected that this comprehensive study will support researchers in modeling health care systems and drive further studies in advanced technologies. Finally, we propose future directions in research and conclude that persuasive AI strategies, probabilistic models, and supervised learning are required to tackle future pandemic challenges.


2020 ◽  
Vol 8 (6) ◽  
pp. 3117-3120

Prediction is the way of identifying the behavior of a person towards online shopping by analyzing the reviews publicly available on the web. In the present study, machine learning approaches are used to extract reviews from the web and segregate and classify them in to five categories, namely, strongly positive, positive, neutral, negative, and strongly negative, for the prediction of human behavior. Several pre-processing methods (including stop-word removal) are applied and web crawler is used to gather the data. This is followed by the application of Stanford POS tagger for tagging the reviews, which is done after stemming by using the porter stemmer algorithm. Analysis of a person’s behavior is performed and experimental results are compared with machine learning approaches.


Author(s):  
Pracheta J. Raut ◽  
Prof. Avantika Mahadik

Today the digital data that world produces is unseen and spectacular. The data from social media, e-commerce and Internet of things generate approximately 2.5 quintillion of bytes per day. This amount is equals 100 million Blu-ray discs or almost 30,000 GB per second. Till today data is growing and will continue to grow in future. In the field of Health care industry, big data has opened new ways to acquire intelligence and data analysis. Collected records from patient, hospital, doctors, medical treatment is known as health care big data. Big data by machine learning are assembled and evaluates the large amount of data in health care. Analytic process and business intelligence (BI) is growing up day by day, as it acquires knowledge and makes right decision. As it is vast and complex growing data, it is very difficult to store. The tradition method of handling big data is incapable to manage and process big data. Hence to resolve this difficulty, some machine learning tools are applied on large amount of data using big data analytics framework. Researchers have proposed some machine learning approaches to improve the accuracy of analytics. Each technique is applied, and their results are compared. And this concluded that we get accurate result from one machine learning approach are called as Ensemble Learning. The final result observed that ensemble learning can obtain high accuracy. In this paper we shall study about various methods to process big data for machine learning and its statistic approaches. Further we study various tools for storing of big data, its advantages, and disadvantages in the field of health care industry.


2021 ◽  
Vol 3 (3) ◽  
pp. 177-191
Author(s):  
R. Kanthavel

In recent days Internet of Things (IOT) has grown up dramatically. It has wide range of applications. One of its applications is Health care system. IOT helps in managing and optimizing of healthcare system. Though it helps in all ways it also brings security problem in account. There is lot of privacy issues aroused due to IOT. In some cases it leads to risk the patient’s life. To overcome this issue we need an architecture named Internet of Medical Things (IOMT). In this paper we have discussed the problems faced by healthcare system and the authentication approaches used by Internet of Medical Things. Machine learning approaches are used to improvise the system performance.


10.2196/24153 ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. e24153
Author(s):  
Gang Luo ◽  
Claudia L Nau ◽  
William W Crawford ◽  
Michael Schatz ◽  
Robert S Zeiger ◽  
...  

Background Asthma exerts a substantial burden on patients and health care systems. To facilitate preventive care for asthma management and improve patient outcomes, we recently developed two machine learning models, one on Intermountain Healthcare data and the other on Kaiser Permanente Southern California (KPSC) data, to forecast asthma-related hospital visits, including emergency department visits and hospitalizations, in the succeeding 12 months among patients with asthma. As is typical for machine learning approaches, these two models do not explain their forecasting results. To address the interpretability issue of black-box models, we designed an automatic method to offer rule format explanations for the forecasting results of any machine learning model on imbalanced tabular data and to suggest customized interventions with no accuracy loss. Our method worked well for explaining the forecasting results of our Intermountain Healthcare model, but its generalizability to other health care systems remains unknown. Objective The objective of this study is to evaluate the generalizability of our automatic explanation method to KPSC for forecasting asthma-related hospital visits. Methods Through a secondary analysis of 987,506 data instances from 2012 to 2017 at KPSC, we used our method to explain the forecasting results of our KPSC model and to suggest customized interventions. The patient cohort covered a random sample of 70% of patients with asthma who had a KPSC health plan for any period between 2015 and 2018. Results Our method explained the forecasting results for 97.57% (2204/2259) of the patients with asthma who were correctly forecasted to undergo asthma-related hospital visits in the succeeding 12 months. Conclusions For forecasting asthma-related hospital visits, our automatic explanation method exhibited an acceptable generalizability to KPSC. International Registered Report Identifier (IRRID) RR2-10.2196/resprot.5039


2020 ◽  
Author(s):  
Gang Luo ◽  
Claudia L Nau ◽  
William W Crawford ◽  
Michael Schatz ◽  
Robert S Zeiger ◽  
...  

BACKGROUND Asthma exerts a substantial burden on patients and health care systems. To facilitate preventive care for asthma management and improve patient outcomes, we recently developed two machine learning models, one on Intermountain Healthcare data and the other on Kaiser Permanente Southern California (KPSC) data, to forecast asthma-related hospital visits, including emergency department visits and hospitalizations, in the succeeding 12 months among patients with asthma. As is typical for machine learning approaches, these two models do not explain their forecasting results. To address the interpretability issue of black-box models, we designed an automatic method to offer rule format explanations for the forecasting results of any machine learning model on imbalanced tabular data and to suggest customized interventions with no accuracy loss. Our method worked well for explaining the forecasting results of our Intermountain Healthcare model, but its generalizability to other health care systems remains unknown. OBJECTIVE The objective of this study is to evaluate the generalizability of our automatic explanation method to KPSC for forecasting asthma-related hospital visits. METHODS Through a secondary analysis of 987,506 data instances from 2012 to 2017 at KPSC, we used our method to explain the forecasting results of our KPSC model and to suggest customized interventions. The patient cohort covered a random sample of 70% of patients with asthma who had a KPSC health plan for any period between 2015 and 2018. RESULTS Our method explained the forecasting results for 97.57% (2204/2259) of the patients with asthma who were correctly forecasted to undergo asthma-related hospital visits in the succeeding 12 months. CONCLUSIONS For forecasting asthma-related hospital visits, our automatic explanation method exhibited an acceptable generalizability to KPSC. CLINICALTRIAL INTERNATIONAL REGISTERED REPORT RR2-10.2196/resprot.5039


Author(s):  
Reyana A ◽  
Sandeep Kautish

Objective: Corona virus-related disease, a deadly illness, has raised public health issues worldwide. The majority of individuals infected are multiplying. The government takes aggressive steps to quarantine people, people exposed to infection, and clinical trials for treatment. Subsequently recommends critical care for the aged, children, and health-care personnel. While machine learning methods have been previously used to augment clinical decisions, there is now a demand for "Emergency ML." With rapidly growing datasets, there also remain important considerations when developing and validating ML models. Methods: This paper reviews the recent study that applies machine-learning technology addressing Corona virus-related disease issues' challenges in different perspectives. The report also discusses various treatment trials and procedures on Corona virus-related disease infected patients providing insights to physicians and the public on the current treatment challenges. Results: The paper provides the individual with insights into certain precautions to prevent and control the spread of this deadly disease. Conclusion: This review highlights the utility of evidence-based machine learning prediction tools in several clinical settings, and how similar models can be deployed during the Corona virus-related disease pandemic to guide hospital frontlines and health-care administrators to make informed decisions about patient care and managing hospital volume. Further, the clinical trials conducted so far for infected patients with Corona virus-related disease addresses their results to improve community alertness from the viewpoint of a well-known saying, “prevention is always better."


2018 ◽  
Vol 17 (S1) ◽  
Author(s):  
Chengliang Yang ◽  
Chris Delcher ◽  
Elizabeth Shenkman ◽  
Sanjay Ranka

Sign in / Sign up

Export Citation Format

Share Document