Using Taguchi methods to improve a control scheme by adjustment of changeable settings: A case study

2002 ◽  
Vol 13 (6) ◽  
pp. 863-876 ◽  
Author(s):  
Tirthankar Dasgupta ◽  
N.R. Sarkar ◽  
K.G. Tamankar
Robotica ◽  
2018 ◽  
Vol 36 (10) ◽  
pp. 1527-1550 ◽  
Author(s):  
Francesco Pierri ◽  
Giuseppe Muscio ◽  
Fabrizio Caccavale

SUMMARYThis paper addresses the trajectory tracking control problem for a quadrotor aerial vehicle, equipped with a robotic manipulator (aerial manipulator). The controller is organized in two layers: in the top layer, an inverse kinematics algorithm computes the motion references for the actuated variables; in the bottom layer, a motion control algorithm is in charge of tracking the motion references computed by the upper layer. To the purpose, a model-based control scheme is adopted, where modelling uncertainties are compensated through an adaptive term. The stability of the proposed scheme is proven by resorting to Lyapunov arguments. Finally, a simulation case study is proposed to prove the effectiveness of the approach.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1877 ◽  
Author(s):  
Brage Rugstad Knudsen ◽  
Hanne Kauko ◽  
Trond Andresen

Industrial plants organized in clusters may improve their economics and energy efficiency by exchanging and utilizing surplus heat. However, integrating inherently dynamic processes and highly time-varying surplus-heat supplies and demands is challenging. To this end, a structured optimization and control framework may significantly improve inter-plant surplus-heat valorization. We present a Modelica-based systems model and optimal-control scheme for surplus-heat exchange in industrial clusters. An industry-cluster operator is assumed to coordinate and control the surplus-heat exchange infrastructure and responsible for handling the surplus heat and satisfy the sink plants’ heat demands. As a case study, we use an industry cluster consisting of two plants with surplus heat available and two plants with heat demand. The total surplus heat and heat demand are equal, but the availability and demand are highly asynchronous. By optimally utilizing demand predictions and a thermal energy storage (TES) unit, the operator is able to supply more than 98% of the deficit heat as surplus heat from the plants in the industry cluster, while only 77% in a corresponding case without TES. We argue that the proposed framework and case study illustrates a direction for increasing inter-plant surplus-heat utilization in industry clusters with reduced use of peak heating, often associated with high costs or emissions.


2014 ◽  
Vol 54 (6-7) ◽  
pp. 1369-1377 ◽  
Author(s):  
Chao-Ton Su ◽  
Hung-Chun Lin ◽  
Po-Wen Teng ◽  
Taho Yang

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Wan ◽  
Jiajia Shen ◽  
Changan Zhang ◽  
Zanquan Lin ◽  
Hu Zhang

Based on the background of the reconstruction project from Changqing Chenzhuang-Pingyin section of G220 east-deep line in China, a special tunnel structure and construction plan was carried out according to the construction measures of the shallow-buried small spacing tunnel passing underneath cultural relic buildings, and a comprehensive deformation control scheme of “CRD construction method single-arm excavation + surface grouting prereinforcement + advanced large pipe shed presupport” was put forward. The results of numerical simulation and on-site construction monitoring showed that the overall deformation of aqueduct foundation generally increases first, then decreases and increases again, and finally tends to be stable. The effects of surface grouting prereinforcement and advance large pipe shed presupport are obvious. The comprehensive deformation control scheme can ensure the safety of the existing construction and meet the safety prevention and control requirements.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Nagendra Kumar ◽  
Hasmat Mlik ◽  
Akhilesh Singh ◽  
Majed A. Alotaibi ◽  
Mohammed E. Nassar

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5616
Author(s):  
Massimiliano Luna ◽  
Antonino Sferlazza ◽  
Angelo Accetta ◽  
Maria Carmela Di Piazza ◽  
Giuseppe La Tona ◽  
...  

Bidirectional DC/DC converters such as the Split-pi can be used to integrate an energy storage system (ESS) into a DC microgrid providing manifold benefits. However, this integration deserves careful design because the ESS converter must behave like a stiff voltage generator, a non-stiff voltage generator, or a current generator depending on the microgrid configuration. Part I of this work presented a comprehensive theoretical analysis of the Split-pi used as an ESS converter in all the possible DC microgrid scenarios. Five typical microgrid scenarios were identified. Each of them required a specific state-space model of the Split-pi and a suitable control scheme. The present paper completes the study validating the theoretical analysis based on simulations and experimental tests. The chosen case study encompassed a 48 V, 750 W storage system interfaced with a 180 V DC microgrid using a Split-pi converter. It can represent a reduced-power prototype of terrestrial and marine microgrids. A prototypal Split-pi converter was realized in the lab, and several experimental tests were performed to assess the performance in each scenario. The results obtained from the experimental tests were coherent with the simulations and validated the study.


2002 ◽  
Vol 124 (3) ◽  
pp. 485-491
Author(s):  
Stefano Chiaverini ◽  
Giuseppe Fusco

This paper describes a systematic procedure to design H∞ position and flux-norm tracking controllers for current-fed induction motors. The designed controllers achieve convergence to zero of both position and flux-norm tracking errors while ensuring robustness with respect to unknown load torque disturbances. The proposed procedure offers the possibility of a simple development of the controllers’ design; in particular, it does not require a numerical solution of the Riccati matrix equation. A case study has been set up which considers the application of the proposed control scheme to a two-link robot manipulator system actuated by two induction motors. Numerical simulation results confirm the validity of the proposed design methodology, even in the presence of rotor resistance uncertainty.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 182 ◽  
Author(s):  
Zengmei Liu ◽  
Yuting Cai ◽  
Shangwei Wang ◽  
Fupeng Lan ◽  
Xushu Wu

While rapid urbanization promotes social and economic development, it poses a serious threat to the health of rivers, especially the small and medium-scale rivers. Flood control for small and medium-scale rivers in highly urbanized areas is particularly important. The purpose of this study is to explore the most effective flood control strategy for small and medium-scale rivers in highly urbanized areas. MIKE 11 and MIKE 21 were coupled with MIKE FLOOD model to simulate flooding with the flood control standard, after which the best flooding control scheme was determined from a whole region perspective (both the mainstream and tributary conditions were considered). The SheGong River basin located near the Guangzhou Baiyun international airport in Guangzhou city over south China was selected for the case study. The results showed that the flooding area in the basin of interest accounts for 42% of the total, with maximum inundation depth up to 0.93 m under the 20-year return period of the designed flood. The flood-prone areas are the midstream and downstream where urbanization is high; however the downstream of the adjacent TieShan River is still able to bear more flooding. Therefore, the probable cost-effective flood control scheme is to construct two new tributaries transferring floodwater in the mid- and downstream of the SheGong River into the downstream of the TieShan River. This infers that flood control for small and medium-scale rivers in highly urbanized areas should not simply consider tributary flood regimes but, rather, involve both tributary and mainstream flood characters from a whole region perspective.


Sign in / Sign up

Export Citation Format

Share Document