Human error revisited: some lessons for situation awareness

Author(s):  
G.D. Baxter ◽  
E.J. Bass
Author(s):  
Sung Ho Kim ◽  
Ji Hwan Lee ◽  
Donggun Park ◽  
Yushin Lee ◽  
Myung Hwan Yun

Clutter problem of modern cockpit displays can occur frequently due to a large amount of information. So, decluttering less important information is required to minimize search time to find target information and prevent human error in interpreting display information. This study is to compare human search performance by visual complexity levels and decluttering methods of cockpit displays. Visual complexity of cockpit displays was designed to be three levels (High, medium, and low) by combining four design variables (number of stimuli, number of colors, number of icons, and variance of divisions) affecting visual complexity. A threat scoring equation was developed to determine what information to be decluttered and four decluttering methods (removal, dimming, dotting, and small sizing) were used to figure out how to declutter the information effectively. Human search performance was measured through search time of visual search task in terms of speed and number of hits of signal detection task in terms of accuracy. The main effect of visual complexity levels and the interaction effect were not significant in both search time and number of hits. Meanwhile, the main effect of decluttering methods was significant in search time. Especially, dotting was the most effective decluttering method in terms of speed and accuracy of human perception performance. The results of this study can be applied to information processing of cockpit displays and then contribute to improve pilot situation awareness.


Author(s):  
Jacob D. Oury ◽  
Frank E. Ritter

AbstractThis chapter moves the discussion of how to design an operation center down a level towards implementation. We present user-centered design (UCD) as a distinct design philosophy to replace user experience (UX) when designing systems like the Water Detection System (WDS). Just like any other component (e.g., electrical system, communications networks), the operator has safe operating conditions, expected error rates, and predictable performance, albeit with a more variable range for the associated metrics. However, analyzing the operator’s capabilities, like any other component in a large system, helps developers create reliable, effective systems that mitigate risks of system failure due to human error in integrated human–machine systems (e.g., air traffic control). With UCD as a design philosophy, we argue that situation awareness (SA) is an effective framework for developing successful UCD systems. SA is an established framework that describes operator performance via their ability to create and maintain a mental model of the information necessary to achieve their task. SA describes performance as a function of the operator’s ability to perceive useful information, comprehend its significance, and predict future system states. Alongside detailed explanations of UCD and SA, this chapter presents further guidance and examples demonstrating how to implement these concepts in real systems.


Author(s):  
Tzu-Chung Yenn ◽  
Yung-Tsan Jou ◽  
Chiuhsiang Joe Lin ◽  
Wan-Shan Tsai ◽  
Tsung-Ling Hsieh

Digitalized nuclear instruments and control systems have become the main stream design for the main control room (MCR) of advanced nuclear power plants (NPPs) nowadays. Digital human-system interface (HSI) could improve human performance and, on the other hand, could reduce operators’ situation awareness as well. It might cause humans making wrong decision during an emergency unintentionally. Besides, digital HSI relies on computers to integrate system information automatically instead of human operation. It has changed the operator’s role from mainly relating operational activity to mainly relating monitoring. However, if operators omit or misjudge the information on the video display units or wide display panel, the error of omission and error of commission may occur. Therefore, how to avoid and prevent human errors has become a very imperative and important issue in the nuclear safety field. This study applies Performance Evaluation Matrix to explore the potential human errors problems of the MCR. The results show that the potential problems which would probably affect to the human performance of the MCR in advanced NPPs are multiple accidents, pressure level, number of operators, and other factors such as working environmental.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247061
Author(s):  
Christophe Lounis ◽  
Vsevolod Peysakhovich ◽  
Mickaël Causse

During a flight, pilots must rigorously monitor their flight instruments since it is one of the critical activities that contribute to update their situation awareness. The monitoring is cognitively demanding, but is necessary for timely intervention in the event of a parameter deviation. Many studies have shown that a large part of commercial aviation accidents involved poor cockpit monitoring from the crew. Research in eye-tracking has developed numerous metrics to examine visual strategies in fields such as art viewing, sports, chess, reading, aviation, and space. In this article, we propose to use both basic and advanced eye metrics to study visual information acquisition, gaze dispersion, and gaze patterning among novices and pilots. The experiment involved a group of sixteen certified professional pilots and a group of sixteen novice during a manual landing task scenario performed in a flight simulator. The two groups landed three times with different levels of difficulty (manipulated via a double task paradigm). Compared to novices, professional pilots had a higher perceptual efficiency (more numerous and shorter dwells), a better distribution of attention, an ambient mode of visual attention, and more complex and elaborate visual scanning patterns. We classified pilot’s profiles (novices—experts) by machine learning based on Cosine KNN (K-Nearest Neighbors) using transition matrices. Several eye metrics were also sensitive to the landing difficulty. Our results can benefit the aviation domain by helping to assess the monitoring performance of the crews, improve initial and recurrent training and ultimately reduce incidents, and accidents due to human error.


Author(s):  
Amanda R. Burden ◽  
Jeffrey B. Cooper ◽  
David M. Gaba

Crisis resource management (CRM) and patient safety are fundamental to the practice of anesthesiology. Human error and system failures continue to play a substantial role in preventable errors that lead to adverse outcomes or death. Many of these deaths are not the result of inadequate medical knowledge and skill, but occur because of problems involving communication and team management. CRM addresses these patient safety issues by addressing behavioral skills for critical events. These skills provide tools to help the leader manage the team and to help the team work together; they include calling for help, establishing situation awareness, using checklists, and communicating effectively. Effective strategies to teach these skills include the use of simulation for team training and Team STEPPS.


Aviation ◽  
2016 ◽  
Vol 20 (2) ◽  
pp. 65-84 ◽  
Author(s):  
Ana P. G. MARTINS

Even considering the current low accident rate in aviation, the anticipated growth in the number of airplanes in the air in the next decades will lead to an inadmissible rise in the number of accidents. These have been mostly attributed to human error and a misunderstanding of automation by the crew, especially during periods of high workload and stress in the cockpit. Therefore, increased safety requires not only advances in technology, but improved cockpit design including better human-machine interface. These cannot be achieved however, without considering some of the cognitive constructs that affect the behaviour of pilots in the cockpit. In fact, given its characteristics and public visibility, the flight deck of commercial jets is one of the most common arenas for the study of complex and skilled human performance. Here I present a literature review on the selected topics of workload, situation awareness, stress and automation in the cockpit, with the goal of supporting the development of new technologies.


2020 ◽  
Vol 1 (4) ◽  
pp. 10-21
Author(s):  
Indra Priyatna ◽  
Antoine Gatinaud

The transportation of goods, passenger and livestock by sea is growing rapidly and rise a need for safety, security and environment protection. Now Indonesia is in the process of implementing E-Navigation. But since E-Navigation is complex and need a lot of system interoperability, then Indonesia may start the implementation by introducing VTS (Vessel Traffic Services) as a system designed to achieve the highest level of safety at sea, increase fleet efficiency and simplify everyday tasks both ashore and on board and therefore the operations are processed seamlessly, the compliance is guaranteed and the workload and costs are optimized. The VTS is not only for vessel traffic management but it also for harbour cluster and integrating communication system among stake holders on ships and on shore. But VTS plays a very important role in maintaining safety of navigation and efficiency as well as environment protection in traffic separation schemes. Nowadays, the next generation of VTS so-called smart VTS is capable to monitor (collect and process the data, create common operational picture, distribute data to clients), alerting (analyse traffic, detect dangerous traffic situations, and increase situation awareness), and respond (active decision support services and ensure ship to shore communications). The respond, however, is similar with the smart marine technology that may reduce human error significantly. Indonesia hopefully will implement the 16 kinds of MS (maritime services) portfolio with smart VTS especially in maintaining safety, security, efficiency and environment protection in traffic separation schemes.


Sign in / Sign up

Export Citation Format

Share Document