Flexible Wireless ECG Circuit Fabrication Technique

Author(s):  
N.S. Sahar ◽  
N.A. Abdul-Kadir ◽  
F.K. Che Harun
1997 ◽  
Vol 07 (01) ◽  
pp. 63-67 ◽  
Author(s):  
B. J. RAMSEY ◽  
P. S. A. EVANS ◽  
D. HARRISON

Author(s):  
T. Sato ◽  
S. Kitamura ◽  
T. Sueyoshl ◽  
M. Iwatukl ◽  
C. Nielsen

Recently, the growth process and relaxation process of crystalline structures were studied by observing a SI nano-pyramid which was built on a Si surface with a UHV-STM. A UHV-STM (JEOL JSTM-4000×V) was used for studying a heated specimen, and the specimen was kept at high temperature during observation. In this study, the nano-fabrication technique utilizing the electromigration effect between the STM tip and the specimen was applied. We observed Si atoms migrated towords the tip on a high temperature Si surface.Clean surfaces of Si(lll)7×7 and Si(001)2×l were prepared In the UHV-STM at a temperature of approximately 600 °C. A Si nano-pyramid was built on the Si surface at a tunneling current of l0nA and a specimen bias voltage of approximately 0V in both polarities. During the formation of the pyramid, Images could not be observed because the tip was stopped on the sample. After the formation was completed, the pyramid Image was observed with the same tip. After Imaging was started again, the relaxation process of the pyramid started due to thermal effect.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 520 ◽  
Author(s):  
Principia Dardano ◽  
Selene De Martino ◽  
Mario Battisti ◽  
Bruno Miranda ◽  
Ilaria Rea ◽  
...  

Microneedles (MNs) are an emerging technology in pharmaceutics and biomedicine, and are ready to be commercialized in the world market. However, solid microneedles only allow small doses and time-limited administration rates. Moreover, some well-known and already approved drugs need to be re-formulated when supplied by MNs. Instead, hollow microneedles (HMNs) allow for rapid, painless self-administrable microinjection of drugs in their standard formulation. Furthermore, body fluids can be easily extracted for analysis by a reverse use of HMNs, thus making them perfect for sensing issues and theranostics applications. The fabrication of HMNs usually requires several many-step processes, increasing the costs and consequently decreasing the commercial interest. Photolithography is a well-known fabrication technique in microelectronics and microfluidics that fabricates MNs. In this paper, authors show a proof of concept of a patented, easy and one-shot fabrication of two kinds of HMNs: (1) Symmetric HMNs with a “volcano” shape, made by using a photolithographic mask with an array of transparent symmetric rings; and (2) asymmetric HMNs with an oblique aperture, like standard hypodermic steel needles, made by using an array of transparent asymmetric rings, defined by two circles, which centers are slightly mismatched. Simulation of light propagation, fabrication process, and preliminary results on ink microinjection are presented.


2012 ◽  
Vol 25 (5) ◽  
pp. 685-688
Author(s):  
Atsushi Asano ◽  
Yuta Maeyoshi ◽  
Katsuyoshi Takano ◽  
Masaaki Omichi ◽  
Masaki Sugimoto ◽  
...  

1990 ◽  
Vol 202 ◽  
Author(s):  
J.F. Jongste ◽  
O.B. Loopstra ◽  
G.C.A.M. Janssen ◽  
S. Radelaar

Integrated circuit fabrication consists of many processing steps: e.g. lithography, etching, implantation and metallization. Some of these processes are combined with thermal processing. Heat treatments require special attention because previous fabrication steps may be influenced: e.g. dopant profiles may be deteriorated. The amount of interference of an annealing step with a former process is determined by the ratio of the reaction rates (and hence by the difference in activation energies).


Sign in / Sign up

Export Citation Format

Share Document