Classification of plant leaves using Morphological features and Zernike moments

Author(s):  
B. S. Harish ◽  
Aditi Hedge ◽  
OmPriya Venkatesh ◽  
D. G. Spoorthy ◽  
D. Sushma
Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 263
Author(s):  
Samreen Naeem ◽  
Aqib Ali ◽  
Christophe Chesneau ◽  
Muhammad H. Tahir ◽  
Farrukh Jamal ◽  
...  

This study proposes the machine learning based classification of medical plant leaves. The total six varieties of medicinal plant leaves-based dataset are collected from the Department of Agriculture, The Islamia University of Bahawalpur, Pakistan. These plants are commonly named in English as (herbal) Tulsi, Peppermint, Bael, Lemon balm, Catnip, and Stevia and scientifically named in Latin as Ocimum sanctum, Mentha balsamea, Aegle marmelos, Melissa officinalis, Nepeta cataria, and Stevia rebaudiana, respectively. The multispectral and digital image dataset are collected via a computer vision laboratory setup. For the preprocessing step, we crop the region of the leaf and transform it into a gray level format. Secondly, we perform a seed intensity-based edge/line detection utilizing Sobel filter and draw five regions of observations. A total of 65 fused features dataset is extracted, being a combination of texture, run-length matrix, and multi-spectral features. For the feature optimization process, we employ a chi-square feature selection approach and select 14 optimized features. Finally, five machine learning classifiers named as a multi-layer perceptron, logit-boost, bagging, random forest, and simple logistic are deployed on an optimized medicinal plant leaves dataset, and it is observed that the multi-layer perceptron classifier shows a relatively promising accuracy of 99.01% as compared to the competition. The distinct classification accuracy by the multi-layer perceptron classifier on six medicinal plant leaves are 99.10% for Tulsi, 99.80% for Peppermint, 98.40% for Bael, 99.90% for Lemon balm, 98.40% for Catnip, and 99.20% for Stevia.


2021 ◽  
pp. 177-191
Author(s):  
Natalia V. Revollo ◽  
G. Noelia Revollo Sarmiento ◽  
Claudio Delrieux ◽  
Marcela Herrera ◽  
Rolando González-José

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mengwan Wei ◽  
Yongzhao Du ◽  
Xiuming Wu ◽  
Qichen Su ◽  
Jianqing Zhu ◽  
...  

The classification of benign and malignant based on ultrasound images is of great value because breast cancer is an enormous threat to women’s health worldwide. Although both texture and morphological features are crucial representations of ultrasound breast tumor images, their straightforward combination brings little effect for improving the classification of benign and malignant since high-dimensional texture features are too aggressive so that drown out the effect of low-dimensional morphological features. For that, an efficient texture and morphological feature combing method is proposed to improve the classification of benign and malignant. Firstly, both texture (i.e., local binary patterns (LBP), histogram of oriented gradients (HOG), and gray-level co-occurrence matrixes (GLCM)) and morphological (i.e., shape complexities) features of breast ultrasound images are extracted. Secondly, a support vector machine (SVM) classifier working on texture features is trained, and a naive Bayes (NB) classifier acting on morphological features is designed, in order to exert the discriminative power of texture features and morphological features, respectively. Thirdly, the classification scores of the two classifiers (i.e., SVM and NB) are weighted fused to obtain the final classification result. The low-dimensional nonparameterized NB classifier is effectively control the parameter complexity of the entire classification system combine with the high-dimensional parametric SVM classifier. Consequently, texture and morphological features are efficiently combined. Comprehensive experimental analyses are presented, and the proposed method obtains a 91.11% accuracy, a 94.34% sensitivity, and an 86.49% specificity, which outperforms many related benign and malignant breast tumor classification methods.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 645 ◽  
Author(s):  
Peijian Shi ◽  
David A. Ratkowsky ◽  
Johan Gielis

Many natural shapes exhibit surprising symmetry and can be described by the Gielis equation, which has several classical geometric equations (for example, the circle, ellipse and superellipse) as special cases. However, the original Gielis equation cannot reflect some diverse shapes due to limitations of its power-law hypothesis. In the present study, we propose a generalized version by introducing a link function. Thus, the original Gielis equation can be deemed to be a special case of the generalized Gielis equation (GGE) with a power-law link function. The link function can be based on the morphological features of different objects so that the GGE is more flexible in fitting the data of the shape than its original version. The GGE is shown to be valid in depicting the shapes of some starfish and plant leaves.


2017 ◽  
Vol 21 (3) ◽  
Author(s):  
José Daniel López-Cabrera ◽  
Juan Valentin Lorenzo-Ginori

Sign in / Sign up

Export Citation Format

Share Document