Application of IPv4, IPv6 and Dual Stack Interface over 802.11ac, 802.11n and 802.11g Wireless Standards

Author(s):  
Somnath Dasgupta ◽  
Pankaj Jyoti Roy ◽  
Nabaraj Sharma ◽  
Debashis Dev Misra
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Fasih Ullah Khan ◽  
Muhammad Awais ◽  
Muhammad Babar Rasheed ◽  
Bilal Masood ◽  
Yazeed Ghadi

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 516
Author(s):  
Tram Thi Bao Nguyen ◽  
Tuy Nguyen Tan ◽  
Hanho Lee

This paper presents a pipelined layered quasi-cyclic low-density parity-check (QC-LDPC) decoder architecture targeting low-complexity, high-throughput, and efficient use of hardware resources compliant with the specifications of 5G new radio (NR) wireless communication standard. First, a combined min-sum (CMS) decoding algorithm, which is a combination of the offset min-sum and the original min-sum algorithm, is proposed. Then, a low-complexity and high-throughput pipelined layered QC-LDPC decoder architecture for enhanced mobile broadband specifications in 5G NR wireless standards based on CMS algorithm with pipeline layered scheduling is presented. Enhanced versions of check node-based processor architectures are proposed to improve the complexity of the LDPC decoders. An efficient minimum-finder for the check node unit architecture that reduces the hardware required for the computation of the first two minima is introduced. Moreover, a low complexity a posteriori information update unit architecture, which only requires one adder array for their operations, is presented. The proposed architecture shows significant improvements in terms of area and throughput compared to other QC-LDPC decoder architectures available in the literature.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 987
Author(s):  
Aki Karttunen ◽  
Mikko Valkama ◽  
Jukka Talvitie

Positioning is considered one of the key features in various novel industry verticals in future radio systems. Since path loss (PL) or received signal strength-based measurements are widely available in the majority of wireless standards, PL-based positioning has an important role among positioning technologies. Conventionally, PL-based positioning has two phases—fitting a PL model to training data and positioning based on the link distance estimates. However, in both phases, the maximum measurable PL is limited by measurement noise. Such immeasurable samples are called censored PL data and such noisy data are commonly neglected in both the model fitting and in the positioning phase. In the case of censored PL, the loss is known to be above a known threshold level and that information can be used in model fitting and in the positioning phase. In this paper, we examine and propose how to use censored PL data in PL model-based positioning. Additionally, we demonstrate with several simulations the potential of the proposed approach for considerable improvements in positioning accuracy (23–57%) and improved robustness against PL model fitting errors.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2715
Author(s):  
Ming-An Chung ◽  
Chih-Wei Yang

The article mainly presents that a simple antenna structure with only two branches can provide the characteristics of dual-band and wide bandwidths. The recommended antenna design is composed of a clockwise spiral shape, and the design has a gradual impedance change. Thus, this antenna is ideal for applications also recommended in these wireless standards, including 5G, B5G, 4G, V2X, ISM band of WLAN, Bluetooth, WiFI 6 band, WiMAX, and Sirius/XM Radio for in-vehicle infotainment systems. The proposed antenna with a dimension of 10 × 5 mm is simple and easy to make and has a lot of copy production. The operating frequency is covered with a dual-band from 2000 to 2742 MHz and from 4062 to beyond 8000 MHz and, it is also demonstrated that the measured performance results of return loss, radiation, and gain are in good agreement with simulations. The radiation efficiency can reach 91% and 93% at the lower and higher bands. Moreover, the antenna gain can achieve 2.7 and 6.75 dBi at the lower and higher bands, respectively. This antenna design has a low profile, low cost, and small size features that may be implemented in autonomous vehicles and mobile IoT communication system devices.


Sign in / Sign up

Export Citation Format

Share Document