ipv6 protocol
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 16)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 4 (4) ◽  
pp. 72
Author(s):  
Manjur Kolhar

5G technology is spreading extremely quickly. Many services, including Voice Over Internet Protocol (VoIP), have utilized the features of 5G technology to improve their performance. VoIP service is gradually ruling the telecommunication sector due to its various advantages (e.g., free calls). However, VoIP service wastes a substantial share of the VoIP 5G network’s bandwidth due to its lengthy packet header. For instance, the share of the packet header from bandwidth and channel time reaches 85.7% of VoIP 5G networks when using the IPv6 protocol. VoIP designers are exerting considerable efforts to solve this issue. This paper contributes to these efforts by designing a new technique named Zeroize (zero sizes). The core of the Zeroize technique is based on utilizing the unnecessary fields of the IPv6 protocol header to keep the packet payload (voice data), thereby reducing or “zeroizing” the payload of the VoIP packet. The Zeroize technique substantially reduces the expanded bandwidth of VoIP 5G networks, which is reflected in the wasted channel time. The results show that the Zeroize technique reduces the wasted bandwidth by 20% with the G.723.1 codec. Therefore, this technique successfully reduces the bandwidth and channel time of VoIP 5G networks when using the IPv6 protocol.


Author(s):  
Manjur Kolhar

5G technology propagation curve is ascending rapidly. 5G will open up the horizon to improve the performance of many other IP-based services such as voice over IP (VoIP). VoIP is a worldwide technology that is expected to rule the telecommunication world in the near future. However, VoIP has expended a significant part of the 5G technology bandwidth with no valuable use owing to its lengthy packet header. This issue even worsens when VoIP works in IPv6 networks, where the wasted bandwidth and airtime may reach 85.7% of 5G networks. VoIP developers have exerted many efforts to tackle this snag. This study adds to these efforts by proposing a new method called Zeroize (zero sizes). The main idea of the Zeroize method is to use superfluous fields of the IPv6 protocol header to carry the digital voice data of the packet and, thus, reduce or zeroize the VoIP packet payload. Although simple, the Zeroize method achieves a considerable reduction of the wasted bandwidth of 5G networks, which also directly affects the consumed airtime. The performance analysis of the Zeroize method shows that the consumed bandwidth is saved by 20% with the G.723.1 codec. Thus, the Zeroize method is a promising solution to reduce the wasted bandwidth and airtime of 5G networks when running VoIP over IPv6.


2021 ◽  
Author(s):  
Eduardo De Oliveira Burger Monteiro Luiz ◽  
Alessandro Copetti ◽  
Luciano Bertini ◽  
Juliano Fontoura Kazienko

The introduction of the IPv6 protocol solved the problem of providingaddresses to network devices. With the emergence of the Internetof Things (IoT), there was also the need to develop a protocolthat would assist in connecting low-power devices. The 6LoWPANprotocols were created for this purpose. However, such protocolsinherited the vulnerabilities and threats related to Denial of Service(DoS) attacks from the IPv4 and IPv6 protocols. In this paper, weprepare a network environment for low-power IoT devices usingCOOJA simulator and Contiki operating system to analyze theenergy consumption of devices. Besides, we propose an IntrusionDetection System (IDS) associated with the AES symmetric encryptionalgorithm for the detection of reflection DoS attacks. Thesymmetric encryption has proven to be an appropriate methoddue to low implementation overhead, not incurring in large powerconsumption, and keeping a high level of system security. The maincontributions of this paper are: (i) implementation of a reflectionattack algorithm for IoT devices; (ii) implementation of an intrusiondetection system using AES encryption; (iii) comparison ofthe power consumption in three distinct scenarios: normal messageexchange, the occurrence of a reflection attack, and runningIDS algorithm. Finally, the results presented show that the IDSwith symmetric cryptography meets the security requirements andrespects the energy limits of low-power sensors.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-5
Author(s):  
Nitin Kumar Nandeshwar ◽  
Rahul N. Nawkhare
Keyword(s):  

2021 ◽  
pp. 1-9
Author(s):  
Shubair Abdullah

IPv6 is the next Internet Protocol version designed to eventually replace IPv4 as the amount of potentially allocated IPv4 addresses is insufficient. The vulnerabilities of IPv6 protocols and the attacks against them demand more attention to be paid. The multicast mechanism is one of the crucial mechanisms that are related to the nature of IPv6 protocol. Despite its usefulness in performing basic tasks in IPv6 environments, the multicast mechanism is considered as a security hole that calls to be understood by the security specialists and IPv6 network administrators. To address the multicast security aspects, this paper presents the attacks that utilize the multicast vulnerability along with the identification of countermeasures for each attack. In particular, this paper analyzes the state-of-the-art attacks and ranks them based on a new severity ranking method to provide significant security guidance for deploying IPv6 networks.


Computers ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 54
Author(s):  
Thiago Lucas ◽  
Maycon Ferreira ◽  
Rychard Plachta ◽  
Gabriel Ferreira ◽  
Kelton Costa

With the expansion in the number of devices that connect to the Internet, a new area, known as the Internet of Things (IoT), appears. It was necessary to migrate the IPv4 protocol by the IPv6 protocol, due to the scarcity of IPv4 addresses. One of the advances of IPv6 concerning its predecessor was the Path MTU Discovery protocol, in which this work aims to demonstrate its effectiveness in a virtual environment. Employing the VirtualBox virtualization program, a scenario is defined with fifteen machines with the Debian operating system and two network scenarios, one using the IPv4 network configuration and the other using the IPv6 network configuration. In both situations, the MTU values of all machines were changed to perform the performance tests while using UDP transport traffic. The fragmentation of packets demonstrated the effectiveness of the Path MTU Discovery protocol. The results achieved point to a stabilization in bandwidth and jitter when Path MTU Discovery is used and to change when it is no longer applied, proving its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document