scholarly journals Miniaturized Broadband-Multiband Planar Monopole Antenna in Autonomous Vehicles Communication System Device

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2715
Author(s):  
Ming-An Chung ◽  
Chih-Wei Yang

The article mainly presents that a simple antenna structure with only two branches can provide the characteristics of dual-band and wide bandwidths. The recommended antenna design is composed of a clockwise spiral shape, and the design has a gradual impedance change. Thus, this antenna is ideal for applications also recommended in these wireless standards, including 5G, B5G, 4G, V2X, ISM band of WLAN, Bluetooth, WiFI 6 band, WiMAX, and Sirius/XM Radio for in-vehicle infotainment systems. The proposed antenna with a dimension of 10 × 5 mm is simple and easy to make and has a lot of copy production. The operating frequency is covered with a dual-band from 2000 to 2742 MHz and from 4062 to beyond 8000 MHz and, it is also demonstrated that the measured performance results of return loss, radiation, and gain are in good agreement with simulations. The radiation efficiency can reach 91% and 93% at the lower and higher bands. Moreover, the antenna gain can achieve 2.7 and 6.75 dBi at the lower and higher bands, respectively. This antenna design has a low profile, low cost, and small size features that may be implemented in autonomous vehicles and mobile IoT communication system devices.

Author(s):  
Ahmed El Hamraoui ◽  
EL Hassane Abdelmounim ◽  
Jamal Zbitou ◽  
Hamid Bennis ◽  
Mohamed Latrach

<p>This paper comes with a new dual-band planar monopole antenna fed by Coplanar Waveguide (CPW) line designed for RFID readers and it operates at 2.45 GHz, 5.80 GHz. This antenna is designed with reasonable gain, low profile and low cost production. The designed antenna based on theoretical equations is simulated and validated by using ADS from Agilent technologies and CST Microwave Studio electromagnetic solvers. A parametric study of the proposed antenna has been carried out by optimizing some critical parameters. The antenna has a total area of 35×38 mm2 and mounted on an FR4 substrate with dielectric permittivity constant 4.4 and thickness of 1.6 mm and loss tangent 0.025. The comparison between simulation and measurement results permits to validate the final achieved antenna structure in the desired RFID frequencies bands. Details of the proposed antenna design and both simulated and experimental results are described and discussed</p>


2012 ◽  
Vol 241-244 ◽  
pp. 2555-2558
Author(s):  
Qi Wang

A printed ring-shaped monopole antenna fed by coplanar waveguide for use in the dual-band wireless communication system has been presented and investigated. By adding some branch strips inside the ring and changing its size, as well as the further optimization, the proposed antenna could work effectively within the scope of 2.4-2.484GHz and 5.15-5.825GHz frequency band. Practical antenna structure is fabricated. The details of the antenna design and both the theoretical and experimental results are discussed.


Author(s):  
Debani Prasad Mishra ◽  
Kshirod Kumar Rout ◽  
Surender Reddy Salkuti

This paper presents the design of a multiple-input and multiple-output (MIMO) antenna for a fifth-generation (5G) smartphone that will work in dual-band. The antenna proposed in this work operates at 2 frequency ranges, i.e., (3300-3600) MHz and (4800-5000) MHz. The antenna design consists of four antennas that are placed perpendicular to the edge of the system and this makes it different from the traditional 5G antennas. The area of each antenna on the side frames is (3.9×17 mm), and hence can be used in ultra-thin smartphones for 5G applications. The reflection coefficient obtained in the simulations is less than -6 dB for the required band, which suggests that the required impedance matching is obtained. The antenna proposed is designed by using central time zone (CST) microwave studio.


2021 ◽  
Vol 109 ◽  
pp. 77-94
Author(s):  
Wei Luo ◽  
Zhixiong Ni ◽  
Yuqi Yang ◽  
Bo Yin ◽  
Yi Ren ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6366
Author(s):  
Amélia Ramos ◽  
Tiago Varum ◽  
João N. Matos

This paper presents a simple, compact and low-cost design method that allows one to obtain low-profile multi-band antennas for the overcrowded future generation networks, which are widely versatile and very heterogeneous in the K/Ka bands. The proposed antennas comprise n radiating monopoles, one for each of the desired operating frequencies, along with a frequency selective feeding network fed at a single point. This concept enables a single antenna to be shared with different radio-frequency (RF) frontends, potentially saving space. Typically, with n-band structures the biggest challenge is to make them highly efficient and here this is assured by multiplexing the frequency, and thus isolating each of the monopoles, allowing the design of scalable structures which fit the 5G applications. Based on the vision proposed here, a dual-band and a tri-band structures were built and characterized by their main parameters. Both prototypes achieved peak efficiencies around 80%, with adequate bandwidths and gains, as well as great compactness.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Maurício Henrique Costa Dias ◽  
Bruno Roberto Franciscatto ◽  
Hans Adel ◽  
Tan-Phu Vuong

Among the present technologies for WLAN devices, USB dongles still play a noticeable role. One major design challenge regards the antenna, which unavoidably has to comply with a very small volume available and sometimes should also allow multiband operation. In this scope, the present work discusses a dual-band WiFi compact planar IFA-based antenna design for a low-cost USB dongle application. Like most of the related published solutions, the methodology for deriving the present proposition was assisted by the use of an antenna analysis software. A prototype was assembled and tested in order to qualify the radiator design. Practical operation conditions were considered in the tests, such as the influence of the dongle case and the effect of the notebook itself. The results complied with the design constraints, presenting an impedance match quite stable regardless of the stick position alongside a laptop base.


Sign in / Sign up

Export Citation Format

Share Document