Developing a Smart City Model that Ensures the Optimum Utilization of Existing Resources in Cities of All Sizes

Author(s):  
Sugeeswari Lekamge ◽  
Ashu Marasinghe
2016 ◽  
Vol 12 (2) ◽  
pp. 77-93 ◽  
Author(s):  
Leonidas Anthopoulos ◽  
Marijn Janssen ◽  
Vishanth Weerakkody

Smart cities have attracted an extensive and emerging interest from both science and industry with an increasing number of international examples emerging from all over the world. However, despite the significant role that smart cities can play to deal with recent urban challenges, the concept has been being criticized for not being able to realize its potential and for being a vendor hype. This paper reviews different conceptualization, benchmarks and evaluations of the smart city concept. Eight different classes of smart city conceptualization models have been discovered, which structure the unified conceptualization model and concern smart city facilities (i.e., energy, water, IoT etc.), services (i.e., health, education etc.), governance, planning and management, architecture, data and people. Benchmarking though is still ambiguous and different perspectives are followed by the researchers that measure -and recently monitor- various factors, which somehow exceed typical technological or urban characteristics. This can be attributed to the broadness of the smart city concept. This paper sheds light to parameters that can be measured and controlled in an attempt to improve smart city potential and leaves space for corresponding future research. More specifically, smart city progress, local capacity, vulnerabilities for resilience and policy impact are only some of the variants that scholars pay attention to measure and control.


Author(s):  
Sara Giaveno

The chapter proposed aims at facing the various implications underlying the smart city concept based on digital twins. The structure of the text is articulated in three main themes: the use of the term “smart city” and the role that technologies had in its definition; the “3D city model” meaning and the integration procedures between BIM (building information modeling) and GIS (geographic information system); the classification of 3D city models by use cases. The chapter can provide researchers with a detailed dissertation aimed at clarifying both the theoretical and technical features belonging to smart city and its related innovative technologies.


2021 ◽  
Vol 110 ◽  
pp. 05003
Author(s):  
Konstantin Semyachkov

The article examines the impact of digital technologies on the sustainable development of ecological and economic systems. The main aspects that make the development of digital technologies especially relevant for environmental modernization and sustainable development are analyzed. It is shown that the large-scale use of digital technologies contributes to the development of new tools, models and methods of urban management. One of the promising areas for the development of the urban environment in these conditions is the concept of a smart city. Based on the analysis of research on the topic of smart cities, the effects of the use of the smart city model for the formation of the foundations of sustainable development of territories are noted.


Author(s):  
Asif Khan ◽  
Khursheed Aurangzeb ◽  
Sheraz Aslam ◽  
Musaed Alhussein

Megacities are complex systems facing the challenges of overpopulation, poor urban design and planning, poor mobility and public transport, poor governance, climate change issues, poor sewerage and water infrastructure, waste and health issues, and unemployment. Smart cities have emerged to address these challenges by making the best use of space and resources for the benefit of citizens. A smart city model views the city as a complex adaptive system consisting of services, resources, and citizens that learn through interaction and change in both the spatial and temporal domains. The characteristics of dynamic development and complexity are key issues for city planners that require a new systematic and modeling approach. Multiscale modeling (MM) is an approach that can be used to better understand complex adaptive systems. The MM aims to solve complex problems at different scales, i.e., micro, meso, and macro, to improve system efficiency and mitigate computational complexity and cost. In this paper, we present an overview of MM in smart cities. First, this study discusses megacities, their current challenges, and their emergence to smart cities. Then, we discuss the need of MM in smart cities and its emerging applications. Finally, the study highlights current challenges and future directions related to MM in smart cities, which provide a roadmap for the optimized operation of smart city systems.


Smart Cities ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Yeshna Jessie Dabeedooal ◽  
Vickramsingh Dindoyal ◽  
Zaheer Allam ◽  
David S. Jones

Mauritius, a small island developing state (SIDS), has an approved government-issued smart city framework geared at facilitating the development of smart cities through an application of Internet of things. In an attempt to move away from privately-operated urban developments in the form of newly built smart cities, an alternate framework has been proposed by Allam and Newman to redefine this timely concept for existing cities with the main dimensions being metabolism, culture, and governance. This new framework focuses on liveability and sustainability that builds on the cultural and historical dimensions of existing cities. This study adds to the redefined smart city paradigm by proposing a new pillar in the form of smart tourism for the city of Port Louis, Mauritius. This paper reviews models of smart tourism and explores how this can be grafted to the Allam and Newman’s smart city model. The findings of this study seek to inform policy makers on alternate and the more relevant economic potential of smart tourism for the city of Port Louis.


2019 ◽  
Vol 17 (5) ◽  
pp. 926-944
Author(s):  
K.V. Krinichanskii ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document