The protective effects of flavonoids from Astragalus complanatus on carbon tetrachloride induced hepatic fibrosis in mice

Author(s):  
Li-Bing Sun ◽  
Zhen-Lun Gu ◽  
Ci-Yi Kwok ◽  
Wei-Ping Wang
2017 ◽  
Vol 23 (31) ◽  
pp. 5722 ◽  
Author(s):  
Cai Zhang ◽  
Xing Tian ◽  
Ke Zhang ◽  
Guo-Yu Li ◽  
Hang-Yu Wang ◽  
...  

Author(s):  
Huimin Liu ◽  
Zhenfang Zhang ◽  
Huangwanyin Hu ◽  
Congen Zhang ◽  
Ming Niu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 390
Author(s):  
Beom-Rak Choi ◽  
Il-Je Cho ◽  
Su-Jin Jung ◽  
Jae-Kwang Kim ◽  
Dae-Geon Lee ◽  
...  

Lemon balm and dandelion are commonly used medicinal herbs exhibiting numerous pharmacological activities that are beneficial for human health. In this study, we explored the protective effects of a 2:1 (w/w) mixture of lemon balm and dandelion extracts (MLD) on carbon tetrachloride (CCl4)-induced acute liver injury in mice. CCl4 (0.5 mL/kg; i.p.) injection inhibited body weight gain and increased relative liver weight. Pre-administration of MLD (50–200 mg/kg) for 7 days prevented these CCl4-mediated changes. In addition, histopathological analysis revealed that MLD synergistically alleviated CCl4-mediated hepatocyte degeneration and infiltration of inflammatory cells. MLD decreased serum aspartate aminotransferase and alanine transferase activities and reduced the number of liver cells that stained positive for cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase, suggesting that MLD protects against CCl4-induced hepatic damage via the inhibition of apoptosis. Moreover, MLD attenuated CCl4-mediated lipid peroxidation and protein nitrosylation by restoring impaired hepatic nuclear factor erythroid 2-related factor 2 mRNA levels and its dependent antioxidant activities. Furthermore, MLD synergistically decreased mRNA and protein levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the liver. Together, these results suggest that MLD has potential for preventing acute liver injury by inhibiting apoptosis, oxidative stress, and inflammation.


2021 ◽  
Vol 19 ◽  
pp. 205873922110008
Author(s):  
Meng Chen ◽  
Xinyan Song ◽  
Jifang Jiang ◽  
Lei Xing ◽  
Pengfei Wang

To investigate the protective effects of galangin on liver toxicity induced by carbon tetrachloride (CCl4) in mice. Mouse hepatotoxicity model was established by intraperitoneal injection (i.p.) of 10 ml/kg body weight CCl4 that diluted with corn oil to a proportion of 1:500 on Kunming mice. The mice were randomly divided into five groups named control group, model group, and 1, 5, and 10 mg/kg galangin group. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed by ELISA. Liver histopathological examination was observed via optical microscopy. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and glutathion (GSSG) were analyzed to assess oxidative stress. Finally, western blot assay was carried out to analyse the expression levels of total AMP-activated protein kinase (AMPK), phospho-AMPK (p-AMPK), total liver kinase B1 (LKB1), and phospho-LKB1 (p-LKB1). Compared with the control group, in the model group, the levels of AST, ALT, MDA, and GSSG increased significantly ( p < 0.01); the activity of SOD and GSH decreased significantly ( p < 0.01); and the histopathological examination revealed liver necrosis. However, treatment with galangin (5 and 10 mg/kg) significantly reversed these CCl4-induced liver damage indicators. Furthermore, treatment with galangin (10 mg/kg) significantly increased the p-AMPK and p-LKB1 expression levels ( p < 0.01). This study supports the hepatoprotective effect of galangin against hepatotoxicity, perhaps occurring mainly through the LKB1/AMPK-mediated pathway.


2012 ◽  
Vol 9 (1) ◽  
pp. 16 ◽  
Author(s):  
Hong-Ying Gao ◽  
Guo-Yu Li ◽  
Meng-Meng Lou ◽  
Xiao-Yu Li ◽  
Xiu-Yan Wei ◽  
...  

2011 ◽  
Vol 440 (3) ◽  
pp. 385-395 ◽  
Author(s):  
Jeffrey A. Handy ◽  
Ping P. Fu ◽  
Pradeep Kumar ◽  
Jamie E. Mells ◽  
Shvetank Sharma ◽  
...  

Adiponectin is protective against hepatic fibrosis, whereas leptin promotes fibrosis. In HSCs (hepatic stellate cells), leptin signals via a JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) pathway, producing effects that enhance ECM (extracellular matrix) deposition. SOCS-3 (suppressor of cytokine signalling-3) and PTP1B (protein tyrosine phosphatase 1B) are both negative regulators of JAK/STAT signalling, and recent studies have demonstrated a role for adiponectin in regulating SOCS-3 expression. In the present study we investigate mechanisms whereby adiponectin dampens leptin signalling and prevents excess ECM production. We treated culture-activated rat HSCs with recombinant adiponectin, leptin, both or neither, and also treated adiponectin knockout (Ad−/−) and wild-type mice with leptin and/or carbon tetrachloride (CCl4) or saline. We analyse JAK2 and Ob-Rb (long form of the leptin receptor) phosphorylation, and PTP1B expression and activity. We also explore potential mechanisms through which adiponectin regulates SOCS-3–Ob-Rb association. Adiponectin inhibits leptin-stimulated JAK2 activation and Ob-Rb phosphorylation in HSCs, whereas both were increased in Ad−/− mice. Adiponectin stimulates PTP1B expression and activity in vitro, whereas PTP1B expression was lower in Ad−/−mice than in wild-type mice. Adiponectin also promotes SOCS-3–Ob-R association and blocks leptin-stimulated formation of extracellular TIMP-1 (tissue inhibitor of metalloproteinases-1)–MMP-1 (matrix metalloproteinase-1) complexes in vitro. These results suggest two novel mechanisms whereby adiponectin inhibits hepatic fibrosis: (i) by promoting binding of SOCS-3 to Ob-Rb, and (ii) by stimulating PTP1B expression and activity, thus inhibiting JAK2/STAT3 signalling at multiple points.


Sign in / Sign up

Export Citation Format

Share Document