A temperature gradient based routing algorithm on 3D NoC

Author(s):  
Gaoming Du ◽  
Xin Liu ◽  
Yunkun Song ◽  
Duoli Zhang ◽  
Yanghao Ou ◽  
...  
2017 ◽  
Vol 32 (3) ◽  
pp. 2227-2242 ◽  
Author(s):  
Bing Gao ◽  
Fan Yang ◽  
Minyou Chen ◽  
Li Ran ◽  
Irfan Ullah ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 481
Author(s):  
Van Tung Le ◽  
Trung Dung Ngo

Guaranteeing data transmission between modules is the key for application development of modular robotic systems. In a multi-channel modular robotic system, intersection modules play an essential role of communication channel selection in controlling data flow toward desired destinations. The gradient-based routing algorithm is an ideal solution to create an one-way communication path from any robotic module to a designated destination. To create bi-directional communication for a communication path of robotic configuration, virtual pheromone-based routing algorithm is a promising mechanism for intersection modules due to its simplicity and distributivity. In this paper, we address a virtual pheromone based network flow control based on the integration of gradient and virtual pheromone-based routing algorithms. We validated this method through an education and entertainment application using our newly developed modular robotic system.


2021 ◽  
Author(s):  
Akiyuki Ono ◽  
Kosei Yamaguchi ◽  
Eiichi Nakakita

<p> It is an essential problem for forecasting Mesoscale Convection Systems to understand the mechanism of interaction between atmospheric flow and vortices with the development of cumulonimbus clouds using a numerical weather model. In this research, potential temperature gradient based vorticity which is the expression of baroclinic is obtained to analyze the energy structure of the vorticity field in developing cumulonimbus. First, applying the variational method enables us to obtain a diagnostic equation in which the equation of motion, conservation law of mass, and entropy are considered as constraints. Second, Fourier analysis was performed on the vorticity field in the cross-section of the convective core in the isolated cumulonimbus simulation. The temporal change of the spectrum of the vorticity field indicates that the rotational intensity of potential temperature gradient based vorticity increases at the same time as the degree of baroclinicity increases. It was also found that the same tendency can be seen in the analysis of the vorticity field of developing clouds using the environment of the heavy rainfall event in the Kuma River basin that occurred on July 4, 2020. We are planning to analyze the vorticity field in the cluster of cumulonimbus clouds and consider the difference in the energy structure of the vorticity field due to the difference in model resolution. Third, we conducted the data assimilation experiment assuming the use of vertical vorticity estimated by doppler radar observation. As a result, the change in the potential temperature and vertical wind through the error covariance matrix generates coherent convection in the computations.</p>


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5712
Author(s):  
Matjaž Perpar ◽  
Zlatko Rek

We carried out several numerical experiments to analyze how different boundary conditions affect the ability to detect small pipeline leaks. Our method is based on determining the soil temperature gradient above a buried district heating channel. The equivalent thermal conductivity of a wet insulation (λeq) value of 0.5 W/(m·K) was used to mimic a small water leakage. To evaluate the heat loss through the channel cross section, the heat conduction model was used for the pipe insulation, the concrete, and the soil, while the convection model was considered within the channel. The following effects were used to simulate different operating conditions: heat convection at the soil surface, leakage only from the supply or return pipe, soil height above the channel, soil thermal conductivity, and pipe diameter. With the exception of leakage only from the return pipe and low soil thermal conductivity 0.4 W/(m·K), the results showed a doubling of the soil temperature gradient when compared with the no-leakage case. This fact undoubtedly confirms the potential of the method, which is particularly suitable for leak detection in old pipelines that have priority for renovation. A key added value of this research is that the soil temperature gradient-based leak detection technique was found useful in most foreseeable DH operating situations.


Sign in / Sign up

Export Citation Format

Share Document