New three dimensional (3D) memory array architecture for future ultra high density DRAM (invited)

Author(s):  
F. Masuoka ◽  
T. Endoh ◽  
H. Sakuraba
1999 ◽  
Vol 34 (4) ◽  
pp. 476-483 ◽  
Author(s):  
T. Endoh ◽  
K. Shinmei ◽  
H. Sakuraba ◽  
F. Masuoka

2012 ◽  
Vol E95.C (5) ◽  
pp. 837-841 ◽  
Author(s):  
Se Hwan PARK ◽  
Yoon KIM ◽  
Wandong KIM ◽  
Joo Yun SEO ◽  
Hyungjin KIM ◽  
...  

2021 ◽  
Vol 126 (2) ◽  
Author(s):  
D. T. Casey ◽  
B. J. MacGowan ◽  
J. D. Sater ◽  
A. B. Zylstra ◽  
O. L. Landen ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1664
Author(s):  
Do Hoon Cho ◽  
Seong Min Seo ◽  
Jang Baeg Kim ◽  
Sri Harini Rajendran ◽  
Jae Pil Jung

With the continuous miniaturization of electronic devices and the upcoming new technologies such as Artificial Intelligence (AI), Internet of Things (IoT), fifth-generation cellular networks (5G), etc., the electronics industry is achieving high-speed, high-performance, and high-density electronic packaging. Three-dimensional (3D) Si-chip stacking using through-Si-via (TSV) and solder bumping processes are the key interconnection technologies that satisfy the former requirements and receive the most attention from the electronic industries. This review mainly includes two directions to get a precise understanding, such as the TSV filling and solder bumping, and explores their reliability aspects. TSV filling addresses the DRIE (deep reactive ion etching) process, including the coating of functional layers on the TSV wall such as an insulating layer, adhesion layer, and seed layer, and TSV filling with molten solder. Solder bumping processes such as electroplating, solder ball bumping, paste printing, and solder injection on a Cu pillar are discussed. In the reliability part for TSV and solder bumping, the fabrication defects, internal stresses, intermetallic compounds, and shear strength are reviewed. These studies aimed to achieve a robust 3D integration technology effectively for future high-density electronics packaging.


2004 ◽  
Vol 834 ◽  
Author(s):  
Akiyoshi Itoh

ABSTRACTIn this report, the newly developed three-dimensional magneto-optical (MO) recording scheme and the experimental results are reported. A part of this work has been done as the national project of 3D-MO (3-dimensional MO) project. It started at September 1998 and ended March 2002 as a part of the national project “Nanometer-Scale Optical High Density Disk Storage System” and aimed at achieving 100 Gb/in2 in storage density. Three-dimensional MO recording is one of the prosperous candidates of next generation ultra high density recording. Magnetic amplifying MO system (MAMMOS) is employed for achieving the novel three-dimensional MO recording. Double-MAMMOS scheme consists of 2-recording layers of differing compensation temperature (Tcomp ) and one readout layer was proposed and discussed.With write/read test it is succeeded to show the results corresponding to a 100 Gb/in2 (50 Gb/in2 × 2) recording density. We also proposed and showed results of simulations of a new type of Double-MAMMOS in which the recording layers can hold quadri-valued information by single writing process.


2012 ◽  
Vol 12 (10) ◽  
pp. 7939-7943
Author(s):  
Yan Liu ◽  
Zhitang Song ◽  
Bo Liu ◽  
Jia Xu ◽  
Houpeng Chen ◽  
...  

2011 ◽  
Vol 29 (9) ◽  
pp. 1351-1360 ◽  
Author(s):  
Philipp R. A. Schneider ◽  
Constanze Buhrmann ◽  
Ali Mobasheri ◽  
Ulrike Matis ◽  
Mehdi Shakibaei

Sign in / Sign up

Export Citation Format

Share Document