Design and synthesis of Karatsuba multiplier using Square root carry select adder (SRCSA)

Author(s):  
Suneel Sankanatti ◽  
S Praveen
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
V. Kokilavani ◽  
K. Preethi ◽  
P. Balasubramanian

Carry select adder is a square-root time high-speed adder. In this paper, FPGA-based synthesis of conventional and hybrid carry select adders are described with a focus on high speed. Conventionally, carry select adders are realized using the following: (i) full adders and 2 : 1 multiplexers, (ii) full adders, binary to excess 1 code converters, and 2 : 1 multiplexers, and (iii) sharing of common Boolean logic. On the other hand, hybrid carry select adders involve a combination of carry select and carry lookahead adders with/without the use of binary to excess 1 code converters. In this work, two new hybrid carry select adders are proposed involving the carry select and section-carry based carry lookahead subadders with/without binary to excess 1 converters. Seven different carry select adders were implemented in Verilog HDL and their performances were analyzed under two scenarios, dual-operand addition and multioperand addition, where individual operands are of sizes 32 and 64-bits. In the case of dual-operand additions, the hybrid carry select adder comprising the proposed carry select and section-carry based carry lookahead configurations is the fastest. With respect to multioperand additions, the hybrid carry select adder containing the carry select and conventional carry lookahead or section-carry based carry lookahead structures produce similar optimized performance.


2015 ◽  
Author(s):  
Dr. P.Bhaskara Reddy ◽  
S.V.S. Prasad ◽  
K. Ananda Kumar

2021 ◽  
Author(s):  
Premananda Belegahalli Siddaiah ◽  
◽  
Nikhil Kiran Jayanthi ◽  
Samana Hanumanth Managoli ◽  
◽  
...  

Author(s):  
Syed Mustafaa M ◽  
◽  
Sathish M ◽  
Nivedha S ◽  
Magribatul Noora A K ◽  
...  

Carry Select Adder (CSLA) is known to be the fastest adder among the conventional adder structure, which uses multiple narrow adders. CSLA has a great scope of reducing area, power consumption, speed and delay. From the structure of regular CSLA using RCA, it consumes large area and power. This proposed work uses a simple and dynamic Gate Level Implementation which reduces the area, delay, power and speed of the regular CSLA. Based on a modified CSLA using BEC the implementation of 8-b, 16-b, 32-b square root CSLA (SQRT CSLA) architecture have been developed. In order to reduce the area and power consumption in a great way we proposed a design using binary to excess 1 converter (BEC). This paper proposes an dynamic method which replaces a BEC using Common Boolean Logic.


Sign in / Sign up

Export Citation Format

Share Document