Bidirectional Power Flow in DC Microgrid and its Islanding Detection Using Support Vector Machine

Author(s):  
Soumadeep Roy ◽  
Saurabh Nayar ◽  
Surendra Kumar ◽  
Aftab Alam ◽  
T Ghose
2012 ◽  
Vol 614-615 ◽  
pp. 1661-1665
Author(s):  
Ling Hui Deng ◽  
Zhi Xin Wang ◽  
Jian Min Duan

The low voltage DC (LVDC) distribution system is a new concept and a promising technology to be used in the future smart distribution system having high level cost-efficiency and reliability. In this paper, a low-voltage (LV) DC microgrid protection system design is proposed. Usually, an LVDC microgrid must be connected to an ac grid through converters with bidirectional power flow and, therefore, a different protection scheme is needed. This paper describes practical protection solutions for the LVDC network and an LVDC system laboratory prototype is being experimentally tested by MATLAB/SIMULINK. The results show that it is possible to use available devices to protect such a system. But other problems may arise which needs further study.


Author(s):  
Wai Wai Hnin

This paper presents a hybrid AC-DC microgrid to reduce the process of multiple conversions in an individual AC microgrid or DC microgrid. The proposed hybrid microgrid compose of both AC microgrid and DC microgrid connected together by bidirectional interlink converter (BIC). Utility grid, 150kVA diesel generator (DG) and 100kW AC load are connected in AC microgrid. DC microgrid is composed of 100 kW photovoltaic array (PV), 20kW battery energy storage system (BESS) and 20kW DC load. The droop control technique is applied to control the system for power sharing within the sources in AC/DC hybrid microgrid in proportion to the power rating. When the faults occur at AC bus, protection signal applied to breaker for isolating the healthy and faults system. DC faults occur at DC bus, DC breaker isolate the AC and DC bus. The system performance for power flow sharing on hybrid AC-DC microgrid is demonstrated by using MATLAB/SIMULINK.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 634 ◽  
Author(s):  
Kamil Khan ◽  
Ahmad Kamal ◽  
Abdul Basit ◽  
Tanvir Ahmad ◽  
Haider Ali ◽  
...  

This paper presents the effectiveness of the interior search algorithm in economic power scheduling of a grid-tied DC microgrid with renewable generation (wind and photovoltaic) and battery energy storage. The study presents the modelling and simulation of various DC/DC converters for tracking maximum power from wind and photovoltaic sources and the bidirectional power flow of battery energy storage. The DC microgrid and its controllers were modelled and simulated in MATLAB/Simulink. The generating units were dispatched economically using the interior search algorithm with the objective to minimize the operating cost of the microgrid. The simulated results verify the effectiveness of the interior search algorithm as the daily cost of microgrid operation was reduced by 11.25%.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1653 ◽  
Author(s):  
Morteza Daviran Keshavarzi ◽  
Mohd Hasan Ali

The conventional bidirectional DC-DC converter (BDC), which employs a half-bridge configuration, has some major disadvantages, including a controller designed for one direction with poor performance in the other direction, a bidirectional operation which does not have symmetrical voltage gain resulting in asymmetrical operation, and step-up and step-down switches that are simultaneously modulated, thereby increasing switching losses. To overcome these drawbacks, this paper proposes a new, nonisolated, DC-DC converter for the bidirectional power flow of battery energy storage applications in DC and hybrid microgrids (HMGs). The proposed converter uses two back-to-back Boost converters with two battery voltage levels, which eliminates step-down operation to obtain symmetric gains and dynamics in both directions. In discharge mode, two battery sections are in parallel connection at a voltage level lower than the grid voltage. In charge mode, two battery sections are in series connection at a voltage level higher than the grid voltage. Simulations demonstrate the efficacy of the proposed converter in the MATALB\Simulink environment. The results show that the proposed converter has promising performance compared to that of the conventional type. Moreover, the novel converter adds no complexity to the control system and does not incur considerable power loss or capital cost.


Sign in / Sign up

Export Citation Format

Share Document