A Blockchain Based Automatic Access Scheme Design and Implement for Small Cell Base Station

Author(s):  
Jingchao Liang ◽  
Jun Wu ◽  
Bin Tan ◽  
Haoqi Ren ◽  
Zhifeng Zhang
2018 ◽  
Vol 66 (12) ◽  
pp. 6851-6861 ◽  
Author(s):  
Petros I. Bantavis ◽  
Christos I. Kolitsidas ◽  
Tzihat Empliouk ◽  
Marc Le Roy ◽  
B. Lars G. Jonsson ◽  
...  

2019 ◽  
Vol 2019 (1) ◽  
pp. 000238-000242
Author(s):  
Hiroyuki Takahashi ◽  
Satoshi Hirano ◽  
Daisuke Yamashita

Abstract We develop the antenna module substrate which is broadband and large gain using an LTCC technology in a 28GHz band in this study. We used LTCC materials (dielectric constant 5.8, Dielectric loss 0.002@28GHz) which we developed for materials originally. First of all, we confirmed ability of slot array antenna made by LTCC for 5G application to get broadband property. The structure of designed array antenna became 40mm × 3.2mm × t1.6mm. We confirmed that this antenna has wider bandwidth (2.2GHz) and higher gain (6dBi). But this antenna size is too large for applying mobile device. Therefore we redesigned to reduce antenna size without specification degradation. The structure of redesigned antenna element becomes basically 4.8mm × 6.7mm × t1.0mm. This antenna has wider bandwidth (2.7GHz). The gains are more than 5dBi for the characteristic of this element in a band. Assume this antenna a fabric; 2 × 2 (4 elements: for mobile device) and 4 × 4 (16 elements: for small cell base station) we make an array antenna for Small cell base station and for mobile device. We will evaluate a beam steering examination with emission properties (gain, beam angle).


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Gao ◽  
Qing Ren ◽  
Pei Shang Gu ◽  
Xin Song

The widespread application of wireless mobile services and requirements of ubiquitous access have resulted in drastic growth of the mobile traffic and huge energy consumption in ultradense networks (UDNs). Therefore, energy-efficient design is very important and is becoming an inevitable trend. To improve the energy efficiency (EE) of UDNs, we present a joint optimization method considering user association and small-cell base station (SBS) on/off strategies in UDNs. The problem is formulated as a nonconvex nonlinear programming problem and is then decomposed into two subproblems: user association and SBS on/off strategies. In the user association strategy, users associate with base stations (BSs) according to their movement speeds and utility function values, under the constraints of the signal-to-interference ratio (SINR) and load balancing. In particular, taking care of user mobility, users are associated if their speed exceeds a certain threshold. The macrocell base station (MBS) considers user mobility, which prevents frequent switching between users and SBSs. In the SBS on/off strategy, SBSs are turned off according to their loads and the amount of time required for mobile users to arrive at a given SBS to further improve network energy efficiency. By turning off SBSs, negative impacts on user associations can be reduced. The simulation results show that relative to conventional algorithms, the proposed scheme achieves energy efficiency performance enhancements.


Author(s):  
Hwiseob Lee ◽  
Wonseob Lim ◽  
Hyunuk Kang ◽  
Wooseok Lee ◽  
Hyoungjun Lee ◽  
...  

Author(s):  
Nor Adibah Ibrahim ◽  
Tharek Abd Rahman ◽  
Razali Ngah ◽  
Omar Abd Aziz ◽  
Olakunle Elijah

The fifth-generation (5G) network has been broadly investigated by many researchers. The capabilities of 5G include massive system capacity, incredibly high data rates everywhere, very low latency and the most important point is that it is exceptionally low device cost and low energy consumption. A key technology of 5G is the millimeter wave operating at 28 GHz and 38 GHz frequency bands which enable massive MIMO and small cell base station densification. However, there has been public concern associated with human exposure to electromagnetic fields (EMF) from 5G communication devices. Hence, this paper studies the power density of a 5G antenna array that can be used for the indoor base station. The power density is the amount of power or signal strength absorbed by a receiver such as the human body located a distance from the base station. To achieve this, the design of array antennas using CST software at 28 GHz, fabrication and measurement were carried out in an indoor and hallway environment. The measurement processes were set up at IC5G at UTM Kuala Lumpur in which the distance of the transmitter to receiver where 1 m, 4 m, 8 m, and 10 m. In this study, the measured power density is found to be below the set limit by ICNIRP and hence no health implication is feared. Regardless, sufficient act of cautionary has to be applied by those staying close to small cell base stations and more studies are still needed to ensure the safety of use of 5G base stations.


Sign in / Sign up

Export Citation Format

Share Document