scholarly journals AFDM: A Full Diversity Next Generation Waveform for High Mobility Communications

Author(s):  
Ali Bemani ◽  
Nassar Ksairi ◽  
Marios Kountouris
2021 ◽  
Vol 52 (S2) ◽  
pp. 395-398
Author(s):  
Yukiharu Uraoka ◽  
Takanori Takahashi ◽  
Mami Fujii ◽  
J.P. Bermundo ◽  
Ryoko Miyanaga ◽  
...  

Author(s):  
S. Wisutmethangoon ◽  
T. F. Kelly ◽  
J.E. Flinn

Vacancies are introduced into the crystal phase during quenching of rapid solidified materials. Cavity formation occurs because of the coalescence of the vacancies into a cluster. However, because of the high mobility of vacancies at high temperature, most of them will diffuse back into the liquid phase, and some will be lost to defects such as dislocations. Oxygen is known to stabilize cavities by decreasing the surface energy through a chemisorption process. These stabilized cavities, furthermore, act as effective nucleation sites for precipitates to form during aging. Four different types of powders with different oxygen contents were prepared by gas atomization processing. The atomized powders were then consolidated by hot extrusion at 900 °C with an extrusion ratio 10,5:1. After consolidation, specimens were heat treated at 1000 °C for 1 hr followed by water quenching. Finally, the specimens were aged at 600 °C for about 800 hrs. TEM samples were prepared from the gripends of tensile specimens of both unaged and aged alloys.


Author(s):  
Wenwu Cao

Domain structures play a key role in determining the physical properties of ferroelectric materials. The formation of these ferroelectric domains and domain walls are determined by the intrinsic nonlinearity and the nonlocal coupling of the polarization. Analogous to soliton excitations, domain walls can have high mobility when the domain wall energy is high. The domain wall can be describes by a continuum theory owning to the long range nature of the dipole-dipole interactions in ferroelectrics. The simplest form for the Landau energy is the so called ϕ model which can be used to describe a second order phase transition from a cubic prototype,where Pi (i =1, 2, 3) are the components of polarization vector, α's are the linear and nonlinear dielectric constants. In order to take into account the nonlocal coupling, a gradient energy should be included, for cubic symmetry the gradient energy is given by,


2004 ◽  
Vol 171 (4S) ◽  
pp. 389-389
Author(s):  
Manoj Monga ◽  
Ramakrishna Venkatesh ◽  
Sara Best ◽  
Caroline D. Ames ◽  
Courtney Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document