High-Dimensional Density Estimation for Data Mining Tasks

Author(s):  
Alexander Kuleshov ◽  
Alexander Bernstein ◽  
Yury Yanovich
Author(s):  
Emmanuel Müller ◽  
Ira Assent ◽  
Ralph Krieger ◽  
Stephan Günnemann ◽  
Thomas Seidl

Author(s):  
VLADIMIR NIKULIN ◽  
TIAN-HSIANG HUANG ◽  
GEOFFREY J. MCLACHLAN

The method presented in this paper is novel as a natural combination of two mutually dependent steps. Feature selection is a key element (first step) in our classification system, which was employed during the 2010 International RSCTC data mining (bioinformatics) Challenge. The second step may be implemented using any suitable classifier such as linear regression, support vector machine or neural networks. We conducted leave-one-out (LOO) experiments with several feature selection techniques and classifiers. Based on the LOO evaluations, we decided to use feature selection with the separation type Wilcoxon-based criterion for all final submissions. The method presented in this paper was tested successfully during the RSCTC data mining Challenge, where we achieved the top score in the Basic track.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 159
Author(s):  
Vaibhav A. Hiwase ◽  
Dr. Avinash J Agrawa

The growth of life insurance has been mainly depending on the risk of insured people. These risks are unevenly distributed among the people which can be captured from different characteristics and lifestyle. These unknown distribution needs to be analyzed from        historical data and use for underwriting and policy-making in life insurance industry. Traditionally risk is calculated from selected     features known as risk factors but today it becomes important to know these risk factors in high dimensional feature space. Clustering in high dimensional feature is a challenging task mainly because of the curse of dimensionality and noisy features. Hence the use of data mining and machine learning techniques should experiment to see some interesting pattern and behaviour. This will help life insurance company to protect from financial loss to the insured person and company as well. This paper focuses on analyzing hidden correlation among features and use it for risk calculation of an individual customer.  


2021 ◽  
Vol 50 (1) ◽  
pp. 138-152
Author(s):  
Mujeeb Ur Rehman ◽  
Dost Muhammad Khan

Recently, anomaly detection has acquired a realistic response from data mining scientists as a graph of its reputation has increased smoothly in various practical domains like product marketing, fraud detection, medical diagnosis, fault detection and so many other fields. High dimensional data subjected to outlier detection poses exceptional challenges for data mining experts and it is because of natural problems of the curse of dimensionality and resemblance of distant and adjoining points. Traditional algorithms and techniques were experimented on full feature space regarding outlier detection. Customary methodologies concentrate largely on low dimensional data and hence show ineffectiveness while discovering anomalies in a data set comprised of a high number of dimensions. It becomes a very difficult and tiresome job to dig out anomalies present in high dimensional data set when all subsets of projections need to be explored. All data points in high dimensional data behave like similar observations because of its intrinsic feature i.e., the distance between observations approaches to zero as the number of dimensions extends towards infinity. This research work proposes a novel technique that explores deviation among all data points and embeds its findings inside well established density-based techniques. This is a state of art technique as it gives a new breadth of research towards resolving inherent problems of high dimensional data where outliers reside within clusters having different densities. A high dimensional dataset from UCI Machine Learning Repository is chosen to test the proposed technique and then its results are compared with that of density-based techniques to evaluate its efficiency.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-17
Author(s):  
Ankit Kumar ◽  
Abhishek Kumar ◽  
Ali Kashif Bashir ◽  
Mamoon Rashid ◽  
V. D. Ambeth Kumar ◽  
...  

Detection of outliers or anomalies is one of the vital issues in pattern-driven data mining. Outlier detection detects the inconsistent behavior of individual objects. It is an important sector in the data mining field with several different applications such as detecting credit card fraud, hacking discovery and discovering criminal activities. It is necessary to develop tools used to uncover the critical information established in the extensive data. This paper investigated a novel method for detecting cluster outliers in a multidimensional dataset, capable of identifying the clusters and outliers for datasets containing noise. The proposed method can detect the groups and outliers left by the clustering process, like instant irregular sets of clusters (C) and outliers (O), to boost the results. The results obtained after applying the algorithm to the dataset improved in terms of several parameters. For the comparative analysis, the accurate average value and the recall value parameters are computed. The accurate average value is 74.05% of the existing COID algorithm, and our proposed algorithm has 77.21%. The average recall value is 81.19% and 89.51% of the existing and proposed algorithm, which shows that the proposed work efficiency is better than the existing COID algorithm.


Author(s):  
Carlotta Domeniconi ◽  
Dimitrios Gunopulos

Pattern classification is a very general concept with numerous applications ranging from science, engineering, target marketing, medical diagnosis and electronic commerce to weather forecast based on satellite imagery. A typical application of pattern classification is mass mailing for marketing. For example, credit card companies often mail solicitations to consumers. Naturally, they would like to target those consumers who are most likely to respond. Often, demographic information is available for those who have responded previously to such solicitations, and this information may be used in order to target the most likely respondents. Another application is electronic commerce of the new economy. E-commerce provides a rich environment to advance the state-of-the-art in classification because it demands effective means for text classification in order to make rapid product and market recommendations. Recent developments in data mining have posed new challenges to pattern classification. Data mining is a knowledge discovery process whose aim is to discover unknown relationships and/or patterns from a large set of data, from which it is possible to predict future outcomes. As such, pattern classification becomes one of the key steps in an attempt to uncover the hidden knowledge within the data. The primary goal is usually predictive accuracy, with secondary goals being speed, ease of use, and interpretability of the resulting predictive model. While pattern classification has shown promise in many areas of practical significance, it faces difficult challenges posed by real world problems, of which the most pronounced is Bellman’s curse of dimensionality: it states the fact that the sample size required to perform accurate prediction on problems with high dimensionality is beyond feasibility. This is because in high dimensional spaces data become extremely sparse and are apart from each other. As a result, severe bias that affects any estimation process can be introduced in a high dimensional feature space with finite samples. Learning tasks with data represented as a collection of a very large number of features abound. For example, microarrays contain an overwhelming number of genes relative to the number of samples. The Internet is a vast repository of disparate information growing at an exponential rate. Efficient and effective document retrieval and classification systems are required to turn the ocean of bits around us into useful information, and eventually into knowledge. This is a challenging task, since a word level representation of documents easily leads 30000 or more dimensions. This chapter discusses classification techniques to mitigate the curse of dimensionality and reduce bias, by estimating feature relevance and selecting features accordingly. This issue has both theoretical and practical relevance, since many applications can benefit from improvement in prediction performance.


2017 ◽  
Vol 90 ◽  
pp. 146-154 ◽  
Author(s):  
Ioannis Kavakiotis ◽  
Patroklos Samaras ◽  
Alexandros Triantafyllidis ◽  
Ioannis Vlahavas

Sign in / Sign up

Export Citation Format

Share Document