Data-Driven Insights from Predictive Analytics on Heterogeneous Experimental Data of Industrial Magnetic Materials

Author(s):  
Zijiang Yang ◽  
Tetsushi Watari ◽  
Daisuke Ichigozaki ◽  
Kei Morohoshi ◽  
Yoshinori Suga ◽  
...  
Author(s):  
He Tan ◽  
Vladimir Tarasov ◽  
Vasileios Fourlakidis ◽  
Attila Dioszegi

For many industries, an understanding of the fatigue behavior of cast iron is important but this topic is still under extensive research in materials science. This paper offers fuzzy logic as a data-driven approach to address the challenge of predicting casting performance. However, data scarcity is an issue when applying a data-driven approach in this field; the presented study tackled this problem. Four fuzzy logic systems were constructed and compared in the study, two based solely upon experimental data and the others combining the same experimental data with data drawn from relevant literature. The study showed that the latter demonstrated a higher accuracy for the prediction of the ultimate tensile strength for cast iron.


2018 ◽  
Author(s):  
Jukka Intosalmi ◽  
Adrian C. Scott ◽  
Michelle Hays ◽  
Nicholas Flann ◽  
Olli Yli-Harja ◽  
...  

AbstractMotivationMulticellular entities, such as mammalian tissues or microbial biofilms, typically exhibit complex spatial arrangements that are adapted to their specific functions or environments. These structures result from intercellular signaling as well as from the interaction with the environment that allow cells of the same genotype to differentiate into well-organized communities of diversified cells. Despite its importance, our understanding on how cell–cell and metabolic coupling produce functionally optimized structures is still limited.ResultsHere, we present a data-driven spatial framework to computationally investigate the development of one multicellular structure, yeast colonies. Using experimental growth data from homogeneous liquid media conditions, we develop and parameterize a dynamic cell state and growth model. We then use the resulting model in a coarse-grained spatial model, which we calibrate using experimental time-course data of colony growth. Throughout the model development process, we use state-of-the-art statistical techniques to handle the uncertainty of model structure and parameterization. Further, we validate the model predictions against independent experimental data and illustrate how metabolic coupling plays a central role in colony formation.AvailabilityExperimental data and a computational implementation to reproduce the results are available athttp://research.cs.aalto.fi/csb/software/multiscale/[email protected],[email protected]


2017 ◽  
Vol 19 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Jun Li ◽  
Eric M. Simmons ◽  
Martin D. Eastgate

A predictive analytics approach to understanding process mass intensity (PMI) is described. This method leverages real-world data to predict probable PMI outcomes for a potential synthetic route and to compare PMI outcomes to the summation of prior experience.


Author(s):  
Zhe Bai ◽  
Steven L. Brunton ◽  
Bingni W. Brunton ◽  
J. Nathan Kutz ◽  
Eurika Kaiser ◽  
...  

2021 ◽  
Vol 73 (03) ◽  
pp. 25-30
Author(s):  
Srikanta Mishra ◽  
Jared Schuetter ◽  
Akhil Datta-Gupta ◽  
Grant Bromhal

Algorithms are taking over the world, or so we are led to believe, given their growing pervasiveness in multiple fields of human endeavor such as consumer marketing, finance, design and manufacturing, health care, politics, sports, etc. The focus of this article is to examine where things stand in regard to the application of these techniques for managing subsurface energy resources in domains such as conventional and unconventional oil and gas, geologic carbon sequestration, and geothermal energy. It is useful to start with some definitions to establish a common vocabulary. Data analytics (DA)—Sophisticated data collection and analysis to understand and model hidden patterns and relationships in complex, multivariate data sets Machine learning (ML)—Building a model between predictors and response, where an algorithm (often a black box) is used to infer the underlying input/output relationship from the data Artificial intelligence (AI)—Applying a predictive model with new data to make decisions without human intervention (and with the possibility of feedback for model updating) Thus, DA can be thought of as a broad framework that helps determine what happened (descriptive analytics), why it happened (diagnostic analytics), what will happen (predictive analytics), or how can we make something happen (prescriptive analytics) (Sankaran et al. 2019). Although DA is built upon a foundation of classical statistics and optimization, it has increasingly come to rely upon ML, especially for predictive and prescriptive analytics (Donoho 2017). While the terms DA, ML, and AI are often used interchangeably, it is important to recognize that ML is basically a subset of DA and a core enabling element of the broader application for the decision-making construct that is AI. In recent years, there has been a proliferation in studies using ML for predictive analytics in the context of subsurface energy resources. Consider how the number of papers on ML in the OnePetro database has been increasing exponentially since 1990 (Fig. 1). These trends are also reflected in the number of technical sessions devoted to ML/AI topics in conferences organized by SPE, AAPG, and SEG among others; as wells as books targeted to practitioners in these professions (Holdaway 2014; Mishra and Datta-Gupta 2017; Mohaghegh 2017; Misra et al. 2019). Given these high levels of activity, our goal is to provide some observations and recommendations on the practice of data-driven model building using ML techniques. The observations are motivated by our belief that some geoscientists and petroleum engineers may be jumping the gun by applying these techniques in an ad hoc manner without any foundational understanding, whereas others may be holding off on using these methods because they do not have any formal ML training and could benefit from some concrete advice on the subject. The recommendations are conditioned by our experience in applying both conventional statistical modeling and data analytics approaches to practical problems.


2021 ◽  
pp. 875529302110533
Author(s):  
Huan Luo ◽  
Stephanie German Paal

Lateral stiffness of structural components, such as reinforced concrete (RC) columns, plays an important role in resisting the lateral earthquake loads. The lateral stiffness relates the lateral force to the lateral deformation, having a critical effect on the accuracy of the lateral seismic response predictions. The classical methods (e.g. fiber beam–column model) to estimate the lateral stiffness require calculations from section, element, and structural levels, which is time-consuming. Moreover, the shear deformation and bond-slip effect may also need to be included to more accurately calculate the lateral stiffness, which further increases the modeling difficulties and the computational cost. To reduce the computational time and enhance the accuracy of the predictions, this article proposes a novel data-driven method to predict the laterally seismic response based on the estimated lateral stiffness. The proposed method integrates the machine learning (ML) approach with the hysteretic model, where ML is used to compute the parameters that govern the nonlinear properties of the lateral response of target structural components directly from a training set composed of experimental data (i.e. data-driven procedure) and the hysteretic model is used to directly output the lateral stiffness based on the computed parameters and then to perform the seismic analysis. We apply the proposed method to predict the lateral seismic response of various types of RC columns subjected to cyclic loading and ground motions. We present the detailed model formulation for the application, including the developments of a modified hysteretic model, a hybrid optimization algorithm, and two data-driven seismic response solvers. The results predicted by the proposed method are compared with those obtained by classical methods with the experimental data serving as the ground truth, showing that the proposed method significantly outperforms the classical methods in both generalized prediction capabilities and computational efficiency.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jukka Intosalmi ◽  
Adrian C. Scott ◽  
Michelle Hays ◽  
Nicholas Flann ◽  
Olli Yli-Harja ◽  
...  

Abstract Background Multicellular entities like mammalian tissues or microbial biofilms typically exhibit complex spatial arrangements that are adapted to their specific functions or environments. These structures result from intercellular signaling as well as from the interaction with the environment that allow cells of the same genotype to differentiate into well-organized communities of diversified cells. Despite its importance, our understanding how this cell–cell and metabolic coupling lead to functionally optimized structures is still limited. Results Here, we present a data-driven spatial framework to computationally investigate the development of yeast colonies as such a multicellular structure in dependence on metabolic capacity. For this purpose, we first developed and parameterized a dynamic cell state and growth model for yeast based on on experimental data from homogeneous liquid media conditions. The inferred model is subsequently used in a spatially coarse-grained model for colony development to investigate the effect of metabolic coupling by calibrating spatial parameters from experimental time-course data of colony growth using state-of-the-art statistical techniques for model uncertainty and parameter estimations. The model is finally validated by independent experimental data of an alternative yeast strain with distinct metabolic characteristics and illustrates the impact of metabolic coupling for structure formation. Conclusions We introduce a novel model for yeast colony formation, present a statistical methodology for model calibration in a data-driven manner, and demonstrate how the established model can be used to generate predictions across scales by validation against independent measurements of genetically distinct yeast strains.


Sign in / Sign up

Export Citation Format

Share Document