Robust Data-Driven Machine-Learning Models for Subsurface Applications: Are We There Yet?

2021 ◽  
Vol 73 (03) ◽  
pp. 25-30
Author(s):  
Srikanta Mishra ◽  
Jared Schuetter ◽  
Akhil Datta-Gupta ◽  
Grant Bromhal

Algorithms are taking over the world, or so we are led to believe, given their growing pervasiveness in multiple fields of human endeavor such as consumer marketing, finance, design and manufacturing, health care, politics, sports, etc. The focus of this article is to examine where things stand in regard to the application of these techniques for managing subsurface energy resources in domains such as conventional and unconventional oil and gas, geologic carbon sequestration, and geothermal energy. It is useful to start with some definitions to establish a common vocabulary. Data analytics (DA)—Sophisticated data collection and analysis to understand and model hidden patterns and relationships in complex, multivariate data sets Machine learning (ML)—Building a model between predictors and response, where an algorithm (often a black box) is used to infer the underlying input/output relationship from the data Artificial intelligence (AI)—Applying a predictive model with new data to make decisions without human intervention (and with the possibility of feedback for model updating) Thus, DA can be thought of as a broad framework that helps determine what happened (descriptive analytics), why it happened (diagnostic analytics), what will happen (predictive analytics), or how can we make something happen (prescriptive analytics) (Sankaran et al. 2019). Although DA is built upon a foundation of classical statistics and optimization, it has increasingly come to rely upon ML, especially for predictive and prescriptive analytics (Donoho 2017). While the terms DA, ML, and AI are often used interchangeably, it is important to recognize that ML is basically a subset of DA and a core enabling element of the broader application for the decision-making construct that is AI. In recent years, there has been a proliferation in studies using ML for predictive analytics in the context of subsurface energy resources. Consider how the number of papers on ML in the OnePetro database has been increasing exponentially since 1990 (Fig. 1). These trends are also reflected in the number of technical sessions devoted to ML/AI topics in conferences organized by SPE, AAPG, and SEG among others; as wells as books targeted to practitioners in these professions (Holdaway 2014; Mishra and Datta-Gupta 2017; Mohaghegh 2017; Misra et al. 2019). Given these high levels of activity, our goal is to provide some observations and recommendations on the practice of data-driven model building using ML techniques. The observations are motivated by our belief that some geoscientists and petroleum engineers may be jumping the gun by applying these techniques in an ad hoc manner without any foundational understanding, whereas others may be holding off on using these methods because they do not have any formal ML training and could benefit from some concrete advice on the subject. The recommendations are conditioned by our experience in applying both conventional statistical modeling and data analytics approaches to practical problems.

2020 ◽  
Vol 18 (160) ◽  
pp. 731-751
Author(s):  
Lavinia Mihaela CRISTEA ◽  

The IT impact can be noticed in all activity fields of this world, and the audit is no exception from the evolution of this technological trend. Motivation: Given that professionals are progressively pursuing experimentation in working with new technologies, the development of Artificial Intelligence (AI), Blockchain, RPA, Machine Learning through the Deep Learning subset is a particularly interesting case, on which the researcher argues for debate. The objective of the article is to present the latest episode of the new technologies impact that outline the auditor profession, the methods and tools used. The quantitative, applied and technical research method allows the analysis of the emerging technologies impact, completing a previous specialized paper of the same author. The results of this paper propose the integration of AI, Blockchain, RPA, Deep Learning and predictive analytics in financial audit missions. The projections resulted from discussions with auditing and IT specialists from Big Four companies show how the technologies presented in this paper could be applied on concrete cases, facilitating current tasks. Machine Learning and Deep Learning would allow a development for prescriptive analytics, revolutionizing the data analytics process. Both the analysis of the literature and the conducted interviews admit AI as a business solution that contributes to the data analytics in an intelligent way, providing a foundation for the development of RPA.


2020 ◽  
pp. 147592172092748 ◽  
Author(s):  
Zhiming Zhang ◽  
Chao Sun

Structural health monitoring methods are broadly classified into two categories: data-driven methods via statistical pattern recognition and physics-based methods through finite elementmodel updating. Data-driven structural health monitoring faces the challenge of data insufficiency that renders the learned model limited in identifying damage scenarios that are not contained in the training data. Model-based methods are susceptible to modeling error due to model idealizations and simplifications that make the finite element model updating results deviate from the truth. This study attempts to combine the merits of data-driven and physics-based structural health monitoring methods via physics-guided machine learning, expecting that the damage identification performance can be improved. Physics-guided machine learning uses observed feature data with correct labels as well as the physical model output of unlabeled instances. In this study, physics-guided machine learning is realized with a physics-guided neural network. The original modal-property based features are extended with the damage identification result of finite element model updating. A physics-based loss function is designed to evaluate the discrepancy between the neural network model output and that of finite element model updating. With the guidance from the scientific knowledge contained in finite element model updating, the learned neural network model has the potential to improve the generality and scientific consistency of the damage detection results. The proposed methodology is validated by a numerical case study on a steel pedestrian bridge model and an experimental study on a three-story building model.


Author(s):  
Peter V. Coveney ◽  
Edward R. Dougherty ◽  
Roger R. Highfield

The current interest in big data, machine learning and data analytics has generated the widespread impression that such methods are capable of solving most problems without the need for conventional scientific methods of inquiry. Interest in these methods is intensifying, accelerated by the ease with which digitized data can be acquired in virtually all fields of endeavour, from science, healthcare and cybersecurity to economics, social sciences and the humanities. In multiscale modelling, machine learning appears to provide a shortcut to reveal correlations of arbitrary complexity between processes at the atomic, molecular, meso- and macroscales. Here, we point out the weaknesses of pure big data approaches with particular focus on biology and medicine, which fail to provide conceptual accounts for the processes to which they are applied. No matter their ‘depth’ and the sophistication of data-driven methods, such as artificial neural nets, in the end they merely fit curves to existing data. Not only do these methods invariably require far larger quantities of data than anticipated by big data aficionados in order to produce statistically reliable results, but they can also fail in circumstances beyond the range of the data used to train them because they are not designed to model the structural characteristics of the underlying system. We argue that it is vital to use theory as a guide to experimental design for maximal efficiency of data collection and to produce reliable predictive models and conceptual knowledge. Rather than continuing to fund, pursue and promote ‘blind’ big data projects with massive budgets, we call for more funding to be allocated to the elucidation of the multiscale and stochastic processes controlling the behaviour of complex systems, including those of life, medicine and healthcare. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’.


Author(s):  
Junyi Liu ◽  
Guangyu Li ◽  
Suvrajeet Sen

Predictive analytics, empowered by machine learning, is usually followed by decision-making problems in prescriptive analytics. We extend the previous sequential prediction-optimization paradigm to a coupled scheme such that the prediction model can guide the decision problem to produce coordinated decisions yielding higher levels of performance. Specifically, for stochastic programming (SP) models with latently decision-dependent uncertainty, without any parametric assumption of the latent dependency, we develop a coupled learning enabled optimization (CLEO) algorithm in which the learning step of predicting the local dependency and the optimization step of computing a candidate decision are conducted interactively. The CLEO algorithm automatically balances the exploration and exploitation via the trust region method with active sampling. Under certain assumptions, we show that the sequence of solutions provided by CLEO converges to a directional stationary point of the original nonconvex and nonsmooth SP problem with probability 1. In addition, we present preliminary experimental results which demonstrate the computational potential of this data-driven approach.


Author(s):  
A. Sheik Abdullah ◽  
S. Selvakumar ◽  
A. M. Abirami

Data analytics mainly deals with the science of examining and investigating raw data to derive useful patterns and inference. Data analytics has been deployed in many of the industries to make decisions at proper levels. It focuses upon the assumption and evaluation of the method with the intention of deriving a conclusion at various levels. Various types of data analytical techniques such as predictive analytics, prescriptive analytics, descriptive analytics, text analytics, and social media analytics are used by industrial organizations, educational institutions and by government associations. This context mainly focuses towards the illustration of contextual examples for various types of analytical techniques and its applications.


Author(s):  
Jorge Manjarrez Sánchez

Analytics is the processing of data for information discovery. In-memory implementation of machine learning and statistical algorithms enable the fast processing of data for descriptive, diagnostic, predictive, and prescriptive analytics. In this chapter, the authors first present some concepts and challenges for fast analytics, then they discuss some of the most relevant proposals and data management structures for in-memory data analytics in centralized, parallel, and distributed settings. Finally, the authors offer further research directions and some concluding remarks.


2021 ◽  
Vol 73 (09) ◽  
pp. 43-43
Author(s):  
Reza Garmeh

The digital transformation that began several years ago continues to grow and evolve. With new advancements in data analytics and machine-learning algorithms, field developers today see more benefits to upgrading their traditional development work flows to automated artificial-intelligence work flows. The transformation has helped develop more-efficient and truly integrated development approaches. Many development scenarios can be automatically generated, examined, and updated very quickly. These approaches become more valuable when coupled with physics-based integrated asset models that are kept close to actual field performance to reduce uncertainty for reactive decision making. In unconventional basins with enormous completion and production databases, data-driven decisions powered by machine-learning techniques are increasing in popularity to solve field development challenges and optimize cube development. Finding a trend within massive amounts of data requires an augmented artificial intelligence where machine learning and human expertise are coupled. With slowed activity and uncertainty in the oil and gas industry from the COVID-19 pandemic and growing pressure for cleaner energy and environmental regulations, operators had to shift economic modeling for environmental considerations, predicting operational hazards and planning mitigations. This has enlightened the value of field development optimization, shifting from traditional workflow iterations on data assimilation and sequential decision making to deep reinforcement learning algorithms to find the best well placement and well type for the next producer or injector. Operators are trying to adapt with the new environment and enhance their capabilities to efficiently plan, execute, and operate field development plans. Collaboration between different disciplines and integrated analyses are key to the success of optimized development strategies. These selected papers and the suggested additional reading provide a good view of what is evolving with field development work flows using data analytics and machine learning in the era of digital transformation. Recommended additional reading at OnePetro: www.onepetro.org. SPE 203073 - Data-Driven and AI Methods To Enhance Collaborative Well Planning and Drilling-Risk Prediction by Richard Mohan, ADNOC, et al. SPE 200895 - Novel Approach To Enhance the Field Development Planning Process and Reservoir Management To Maximize the Recovery Factor of Gas Condensate Reservoirs Through Integrated Asset Modeling by Oswaldo Espinola Gonzalez, Schlumberger, et al. SPE 202373 - Efficient Optimization and Uncertainty Analysis of Field Development Strategies by Incorporating Economic Decisions in Reservoir Simulation Models by James Browning, Texas Tech University, et al.


Sign in / Sign up

Export Citation Format

Share Document