A Botnet Detection System Based on Neural Networks

Author(s):  
António Nogueira ◽  
Paulo Salvador ◽  
Fábio Blessa
Author(s):  
Muhammad Hanif Ahmad Nizar ◽  
Chow Khuen Chan ◽  
Azira Khalil ◽  
Ahmad Khairuddin Mohamed Yusof ◽  
Khin Wee Lai

Background: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection. Methods: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos. Results: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in framesper- second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models. Conclusion: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2538
Author(s):  
Shuang Zhang ◽  
Feng Liu ◽  
Yuang Huang ◽  
Xuedong Meng

The direct-sequence spread-spectrum (DSSS) technique has been widely used in wireless secure communications. In this technique, the baseband signal is spread over a wider bandwidth using pseudo-random sequences to avoid interference or interception. In this paper, the authors propose methods to adaptively detect the DSSS signals based on knowledge-enhanced compressive measurements and artificial neural networks. Compared with the conventional non-compressive detection system, the compressive detection framework can achieve a reasonable balance between detection performance and sampling hardware cost. In contrast to the existing compressive sampling techniques, the proposed methods are shown to enable adaptive measurement kernel design with high efficiency. Through the theoretical analysis and the simulation results, the proposed adaptive compressive detection methods are also demonstrated to provide significantly enhanced detection performance efficiently, compared to their counterpart with the conventional random measurement kernels.


2021 ◽  
Author(s):  
Can Zhang ◽  
Xu Zhang ◽  
Dawei Tu ◽  
Ying Wang

2019 ◽  
Author(s):  
Jimut Bahan Pal

It has been a real challenge for computers with low computing power and memory to detect objects in real time. After the invention of Convolution Neural Networks (CNN) it is easy for computers to detect images and recognize them. There are several technologies and models which can detect objects in real time, but most of them require high end technologies in terms of GPUs and TPUs. Though, recently many new algorithms and models have been proposed, which runs on low resources. In this paper we studied MobileNets to detect objects using webcam to successfully build a real time objectdetection system. We observed the pre trained model of the famous MS COCO dataset to achieve our purpose. Moreover, we applied Google’s open source TensorFlow as our back end. This real time object detection system may help in future to solve various complex vision problems.


Author(s):  
Lynn Ray ◽  
Henry Felch

Advanced persistent threats (APTs) have become a big problem for computer systems. Databases are vulnerable to these threats and can give attackers access to an organizations sensitive data. Oracle databases are at greater risk due to their heavy use as back-ends to corporate applications such as enterprise resource planning software. This chapter will describe a methodology for finding APTs hiding or operating deep within an Oracle database system. Using an understanding of Oracle normal operations provides a baseline to assist in discovering APT behavior. Incorporating these and other techniques such as database activity monitoring, machine learning, neural networks and honeypots/tokens can create a database intrusion detection system capable of finding these threats.


Sign in / Sign up

Export Citation Format

Share Document