Research on method of checking and measuring energy utilization efficiency for quayside container crane

Author(s):  
Feng ShuangChang ◽  
Qiu Jun ◽  
Xue JiAi ◽  
Chen Jie
2021 ◽  
pp. 1-18
Author(s):  
Jiahang Yuan ◽  
Yun Li ◽  
Xinggang Luo ◽  
Lingfei Li ◽  
Zhongliang Zhang ◽  
...  

Regional integrated energy system (RIES) provides a platform for coupling utilization of multi-energy and makes various energy demand from client possible. The suitable RIES composition scheme will upgrade energy structure and improve integrated energy utilization efficiency. Based on a RIES construction project in Jiangsu province, this paper proposes a new multi criteria decision-making (MCDM) method for the selection of RIES schemes. Because that subjective evaluation on RIES schemes benefit under criteria has uncertainty and hesitancy, intuitionistic trapezoidal fuzzy number (ITFN) which has the better capability to model ill-known quantities is presented. In consideration of risk attitude and interdependency of criteria, a new decision model with risk coefficients, Mahalanobis-Taguchi system and Choquet integral is proposed. Firstly, the decision matrices given by experts are normalized, and then are transformed to minimum expectation matrices according to different risk coefficients. Secondly, the weights of criteria from different experts are calculated by Mahalanobis-Taguchi system. Mobius transformation coefficients based on interaction degree are to calculate 2-order additive fuzzy measures, and then the comprehensive weights of criteria are obtained by fuzzy measures and Choquet integral. Thirdly, based on group decision consensus requirement, the weights of experts are obtained by the maximum entropy and grey correlation. Fourthly, the minimum expectation matrices are aggregated by the intuitionistic trapezoidal fuzzy Bonferroni mean operator. Thus, the ranking result according to the comparison rules using the minimum expectation and the maximum expectation is obtained. Finally, an illustrative example is taken in the present study to make the proposed method comprehensible.


Author(s):  
H. X. Liang ◽  
Q. W. Wang

This paper deals with the problem of energy utilization efficiency evaluation of a microturbine system for Combined Cooling, Heating and Power production (CCHP). The CCHP system integrates power generation, cooling and heating, which is a type of total energy system on the basis of energy cascade utilization principle, and has a large potential of energy saving and economical efficiency. A typical CCHP system has several options to fulfill energy requirements of its application, the electrical energy can be produced by a gas turbine, the heat can be generated by the waste heat of a gas turbine, and the cooling load can be satisfied by an absorption chiller driven by the waste heat of a gas turbine. The energy problem of the CCHP system is so large and complex that the existing engineering cannot provide satisfactory solutions. The decisive values for energetic efficiency evaluation of such systems are the primary energy generation cost. In this paper, in order to reveal internal essence of CCHP, we have analyzed typical CCHP systems and compared them with individual systems. The optimal operation of this system is dependent upon load conditions to be satisfied. The results indicate that CCHP brings 38.7 percent decrease in energy consumption comparing with the individual systems. A CCHP system saves fuel resources and has the assurance of economic benefits. Moreover, two basic CCHP models are presented for determining the optimum energy combination for the CCHP system with 100kW microturbine, and the more practical performances of various units are introduced, then Primary Energy Ratio (PER) and exergy efficiency (α) of various types and sizes systems are analyzed. Through exergy comparison performed for two kinds of CCHP systems, we have identified the essential principle for high performance of the CCHP system, and consequently pointed out the promising features for further development.


2017 ◽  
Vol 43 (9) ◽  
pp. 6822-6830 ◽  
Author(s):  
Wutao Mao ◽  
Zhengdao Li ◽  
Keyan Bao ◽  
Kaijun Zhang ◽  
Weibo Wang ◽  
...  

2015 ◽  
Vol 1092-1093 ◽  
pp. 1597-1600
Author(s):  
Zhong Hua Wang ◽  
Xin Ye Chen

The need to reduce carbon emission in Heilongjiang Province of China is urgent challenge facing sustainable development. This paper aims to make explicit the problem-solving of carbon emission to find low carbon emission ways. According to domestic and foreign literatures on estimating and calculating carbon emissions and by integrating calculation methods of carbon emissions, it was not possible to consider all of the many contributions to carbon emissions. Calculation model of carbon emissions suitable to this paper is selected. The carbon emissions of energy consumption in mining industry are estimated and calculated from 2005 to 2012, and the characteristics of carbon emission are analyzed at the provincial level. It makes the point that carbon emissions of energy consumption in mining industry can be reduced when we attempt to alter energy consumption structure, adjust industrial structure and improve energy utilization efficiency.


1992 ◽  
Author(s):  
Αναστασία Κοτρωναρου

The ultrasonic irradiation of para-nitrophenol, S(-II), and parathion is studied in aqueous solutions at 20 kHz and ~ 75 W-cnT2. Para-nitrophenol was degraded primarily by denitration and secondarily by ΌΗ radical attack to yield N 02, NO3, benzoquinone, hydroquinone, 4-nitrocatechol, formate and oxalate. These reaction products and the kinetic observations are consistent with a model involving high-temperature reactions of p-nitrophenol in the interfa.cia.1 region of cavitation bubbles. The average effective temperature of the interfacial region surrounding the cavitation bubbles was estimated to be T ~ 800 K. Ultrasonic irradiation of S(-II) is studied in aqueous solutions over the pH range 7 - 12. The reaction of HS“ with OH is the principal pathway for theoxidation of S(-II) at pH > 10; the oxidation products are SO2“, SO2", and S20 Upon prolonged sonication, SO2" is the only observed product. At pH < 8.5, thermal decomposition of H2S within or near collapsing cavitation bubbles becomes the important pathway and elemental sulfur is found as an additional product of the sonolysis of S(-II). The sonolytic oxidation of H2S at pH > 10 was successfully modeled with an aqueous-phase free-radical chemistry mechanism and assumingcontinuous and uniform ΌΗ input into solution from the imploding cavitation bubbles. Parathion degradation occurred primarily by enhanced hydrolysis and secondarily by direct ΌΗ radical attack.The effect of various physical and chemical parameters on sonolytic yields is examined. The observed effects are in qualitative agreement with the sonolysis mechanisms proposed for the chemicals of interest and the existing hydrodynamic theories of acoustic cavitation. The formation of iodine upon ultrasonic irradiation of potassium iodide solutions and the sonolysis of S(-II) are used as probes to compare the sonochemical efficiency of different experimental set-ups. This work elucidates the mechanisms of the ultrasonic decomposition of typical organic and inorganic pollutants. It is shown that ultrasound has the potential to become a viable alternative for the destruction of chemical contaminants in water and wastewater. The current limitation of sonolysis is its low energy utilization efficiency, but there is room for improvement by optimizing reactor design and physical/chemical operation conditions. This work offers some recommendations and insight in that respect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guangyan Li ◽  
Tingting Chen ◽  
Baohua Feng ◽  
Shaobing Peng ◽  
Longxing Tao ◽  
...  

Photosynthesis is an important biophysical and biochemical reaction that provides food and oxygen to maintain aerobic life on earth. Recently, increasing photosynthesis has been revisited as an approach for reducing rice yield losses caused by high temperatures. We found that moderate high temperature causes less damage to photosynthesis but significantly increases respiration. In this case, the energy production efficiency is enhanced, but most of this energy is allocated to maintenance respiration, resulting in an overall decrease in the energy utilization efficiency. In this perspective, respiration, rather than photosynthesis, may be the primary contributor to yield losses in a high-temperature climate. Indeed, the dry matter weight and yield could be enhanced if the energy was mainly allocated to the growth respiration. Therefore, we proposed that engineering smart rice cultivars with a highly efficient system of energy production, allocation, and utilization could effectively solve the world food crisis under high-temperature conditions.


Author(s):  
Ming Liu ◽  
Rongtang Liu ◽  
Junjie Yan

Lignite, a kind of low rank coal, has the characteristics of high moisture, high volatile, high ash and low heat value. The low-temperature pyrolysis technology is potential to improve the utilization efficiency of lignite. Therefore, a lignite-based energy system integrated with pre-drying and low-temperature pyrolysis was proposed in this paper. To assess the influence of pre-drying process, theoretical models were developed based on thermodynamics, and a case analysis was then performed to get the quantitative effect of pre-drying on efficiency of energy utilization. Results show that pre-drying on PPPS theoretical model can significantly improve the utilization of lignite by 1.46%.Keywords: Lignite; Pre-drying; Low-temperature pyrolysis; Energy efficiency; Case analysis.   


2014 ◽  
Vol 881-883 ◽  
pp. 653-658 ◽  
Author(s):  
Yong Qiang Xiong ◽  
Ben Hua

In this paper, a cryogenic air separation process with LNG cold energy utilization is proposed to produce liquid nitrogen and high pressure pure oxygen gas economically. To reduce the electric energy consumption of air separation products, liquid nitrogen have been produced by condensing the separated pure nitrogen gas with LNG cold energy utilization, and the recycled nitrogen is served to transfer cold energy from LNG stream to cool off air stream in the proposed cryogenic air separation process. The specifications of streams and the major equipments of the air separation process are simulated with Aspen Plus software and the main parameters analysis are performed. The results show that the energy consumption of the proposed air separation process with LNG cold energy utilization decreased about 58.2% compared with a conventional cryogenic air separation process. The compressed pressure of recycled nitrogen has a big impact on the cost of air separation products and utilization efficiency of LNG cold energy. The LNG cold energy could be fully utilized when the recycled nitrogen has been compressed to above 6.5MPa.


Sign in / Sign up

Export Citation Format

Share Document