Antenna Miniaturization Using Dielectric Cavity

Author(s):  
Yiran Da ◽  
Xiaoming Chen
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3897
Author(s):  
Supakit Kawdungta ◽  
Akkarat Boonpoonga ◽  
Chuwong Phongcharoenpanich

In light of the growth in demand for multiband antennas for medical applications, this research proposes a MICS/ISM meander-line microstrip antenna encapsulated in an oblong-shaped pod for use in diagnoses of the gastrointestinal tract. The proposed antenna is operable in the Medical Implant Communication System (MICS) and the Industrial, Scientific and Medical (ISM) bands. The antenna structure consists of a meander-line radiating patch, a flipped-L defected ground plane, and a loading resistor for antenna miniaturization. The MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod was simulated in various lossy-material environments. In addition, the specific absorption rate (SAR) was calculated and compared against the IEEE C95.1 standard. For verification, an antenna prototype was fabricated and experiments carried out in equivalent liquid mixtures, the dielectric constants of which resembled human tissue. The measured impedance bandwidths (|S11| ≤ −10 dB) for the MICS and ISM bands were 398–407 MHz and 2.41–2.48 GHz. The measured antenna gains were −38 dBi and −13 dBi, with a quasi-omnidirectional radiation pattern. The measured SAR was substantially below the maximum safety limits. As a result, the described MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod can be used for real-time gastrointestinal tract diagnosis. The novelty of this work lies in the use of a meander-line microstrip, flipped-L defected ground plane, and loading resistor to miniaturize the antenna and realize the MICS and ISM bands.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Samantha Caporal Del Barrio ◽  
Art Morris ◽  
Gert F. Pedersen

In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-of-the-art in terms of insertion loss. Their characteristics are used in this investigation. This paper uses field simulations to highlight the trade-offs between the design of the tuner and the design of the antenna, especially the impact of the location of the tuner and the degree of miniaturization. Codesigning the tuner and the antenna is essential to optimize radiated performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Jing Wang ◽  
Yunlong Sheng

Superlens imaging system in nanolithography can be regarded as a cascade of two F-P cavities, i.e., a superlens cavity and a dielectric cavity between superlens and introduced mask of high loss, and the transfer function of system is obtained by considering multiple reflections inside the two cavities. For the range of wavevector of interest, the typical high peak of transmission coefficient of superlens coincides with a local minimum of transmission coefficient of dielectric cavity. The peak of transfer function of system corresponds to the peak of transmission coefficient of dielectric cavity. Thin superlens imaging system in nanolithography is analyzed based on transfer function, which can be flattened by simply tuning transmission coefficient of dielectric cavity and superlens cavity. The results are further validated by Finite Element Method (FEM) simulations.


Sign in / Sign up

Export Citation Format

Share Document