Prediction of Delamination in Micro-electronic Packages

Author(s):  
W.D. van Driel ◽  
M.A.J. van Gils ◽  
G.Q. Zhang
Keyword(s):  
Author(s):  
Luis A. Curiel ◽  
Andrew J. Komrowski ◽  
Daniel J.D. Sullivan

Abstract Acoustic Micro Imaging (AMI) is an established nondestructive technique for evaluation of electronic packages. Non-destructive evaluation of electronic packages is often a critical first step in the Failure Analysis (FA) process of semiconductor devices [1]. The molding compound to die surface interface of the Plastic Ball Grid Array (PBGA) and Plastic Quad Flat Pack (PQFP) packages is an important interface to acquire for the FA process. Occasionally, with these packages, the standard acoustic microscopy technique fails to identify defects at the molding compound to die surface interface. The hard to identify defects are found at the edge of the die next to the bond pads or under the bonds wires. This paper will present a technique, Backside Acoustic Micro Imaging (BAMI) analysis, which can better resolve the molding compound to die surface interface at the die edge by sending the acoustic signal through the backside of the PBGA and PQFP packages.


Author(s):  
Andrew J. Komrowski ◽  
Luis A. Curiel ◽  
Daniel J. D. Sullivan ◽  
Quang Nguyen ◽  
Lisa Logan-Willams

Abstract The acquisition of reliable Acoustic Micro Images (AMI) are an essential non-destructive step in the Failure Analysis (FA) of electronic packages. Advanced packaging and new IC materials present challenges to the collection of reliable AMI signals. The AMI is complicated due to new technologies that utilize an increasing number of interfaces in ICs and packages. We present two case studies in which it is necessary to decipher the acoustic echoes from the signals generated by the interface of interest in order to acquire trustworthy information about the IC package.


Author(s):  
Deepak Goyal

Abstract Next generation assembly/package development challenges are primarily increased interconnect complexity and density with ever shorter development time. The results of this trend present some distinct challenges for the analytical tools/techniques to support this technical roadmap. The key challenge in the analytical tools/techniques is the development of non-destructive imaging for improved time to information. This paper will present the key drivers for the non-destructive imaging, results of literature search and evaluation of key analytical techniques currently available. Based on these studies requirements of a 3D imaging capability will be discussed. Critical breakthroughs required for development of such a capability are also summarized.


2008 ◽  
Vol 52 (6) ◽  
pp. 623-634 ◽  
Author(s):  
S. M. Sri-Jayantha ◽  
G. McVicker ◽  
K. Bernstein ◽  
J. U. Knickerbocker

2021 ◽  
Vol 123 ◽  
pp. 114181
Author(s):  
Peter Meszmer ◽  
Mehryar Majd ◽  
Alexandru Prisacaru ◽  
Przemyslaw Jakub Gromala ◽  
Bernhard Wunderle

2004 ◽  
Vol 44 (7) ◽  
pp. 1157-1163 ◽  
Author(s):  
Ashish Batra ◽  
Pradeep Ramachandran ◽  
Poornima Sathyanarayanan ◽  
Susan Lu ◽  
Hari Srihari

2003 ◽  
Vol 125 (4) ◽  
pp. 512-519 ◽  
Author(s):  
C. J. Liu ◽  
L. J. Ernst ◽  
G. Wisse ◽  
G. Q. Zhang ◽  
M. Vervoort

Interface delamination failure caused by thermomechanical loading and mismatch of thermal expansion coefficients and other material properties is one of the important failure modes occurring in electronic packages, thus a threat for package reliability. To solve this problem, both academic institutions and industry have been spending tremendous research effort in order to understand the inherent failure mechanisms and to develop advanced and reliable experimental and simulation methodologies, thus to be able to predict and to avoid interface delamination before physical prototyping. Various damage mechanisms can be involved and can result in interface delamination phenomena. These are not all sufficiently addressed and/or reported so far, probably because of the complexities caused by the occurrence of strong geometric and materials nonlinearities. One of the phenomena being insufficiently understood so far is the so-called buckling-driven delamination of thin metalic layers on ceramic substrates. This phenomenon will be discussed in the present paper.


2003 ◽  
Author(s):  
Frank R. Wagner ◽  
Wentao Hu ◽  
Akos Spiegel ◽  
Nandor Vago ◽  
Bernold Richerzhagen

Sign in / Sign up

Export Citation Format

Share Document