Advanced Acoustic Micro Imaging Applications: Deciphering Multiple Acoustic Echoes and Reflections

Author(s):  
Andrew J. Komrowski ◽  
Luis A. Curiel ◽  
Daniel J. D. Sullivan ◽  
Quang Nguyen ◽  
Lisa Logan-Willams

Abstract The acquisition of reliable Acoustic Micro Images (AMI) are an essential non-destructive step in the Failure Analysis (FA) of electronic packages. Advanced packaging and new IC materials present challenges to the collection of reliable AMI signals. The AMI is complicated due to new technologies that utilize an increasing number of interfaces in ICs and packages. We present two case studies in which it is necessary to decipher the acoustic echoes from the signals generated by the interface of interest in order to acquire trustworthy information about the IC package.

2011 ◽  
Vol 2011 (1) ◽  
pp. 001078-001083 ◽  
Author(s):  
K. Fahey ◽  
R. Estrada ◽  
L. Mirkarimi ◽  
R. Katkar ◽  
D. Buckminster ◽  
...  

This paper describes the utilization of non-destructive imaging using 3D x-ray microscopy for package development and failure analysis. Four case studies are discussed to explain our methodology and its impact on our advanced packaging development effort. Identifying and locating failures embedded deep inside the package, such as a solder fatigue failure within a flip chip package, without the need for physical cross-sectioning is of substantial benefit because it preserves the package for further analysis. Also of utility is the ability to reveal the structural details of the package while producing superior quality 2D and volumetric images. The technique could be used not only for analysis of defects and failures, but also to characterize geometries and morphologies during the process and package development stage.


Author(s):  
B. Zee ◽  
W. Qiu ◽  
J. Alton ◽  
T. White ◽  
M. Igarashi ◽  
...  

Abstract We demonstrate how electro optical terahertz pulse reflectometry (EOTPR) can be used in conjunction with a new one-dimensional lump circuit simulation software to quickly and non-destructively isolate faults in advanced IC packages. In the case studies presented, short failures are accurately located in a series of advanced IC package.


Author(s):  
Srinath Rajaram ◽  
Rajesh Kabadi ◽  
Eric Barbian

Abstract Given the challenges FA Engineers have in fault localization, top-side analysis is facing a major challenge with today’s advanced packaging and shrinking of die sizes. At wafer and die level it is relatively easy to probe with little or no sample preparation. Greater challenges occur after the die is packaged. The difficulty further lies in non-destructively analyzing the die. Another issue with failure analysis is accurately deprocessing the device for probe pad deposition. Techniques like Electro Optical Probing (EOP) or Laser Voltage Probing (LVP) acquire electrical signals on transistors and create an activity map of the circuitry. In failure analysis, it is applied to localize defects. This paper discusses integrating EOP techniques in traditional FA to localize failure in mixed signal ICs. Three case studies were presented in this paper to establish the technique to be effective, quick and easy to probe non-invasively with minimal backside sample preparation.


Author(s):  
Erick Kim ◽  
Kamjou Mansour ◽  
Gil Garteiz ◽  
Javeck Verdugo ◽  
Ryan Ross ◽  
...  

Abstract This paper presents the failure analysis on a 1.5m flex harness for a space flight instrument that exhibited two failure modes: global isolation resistances between all adjacent traces measured tens of milliohm and lower resistance on the order of 1 kiloohm was observed on several pins. It shows a novel method using a temperature controlled air stream while monitoring isolation resistance to identify a general area of interest of a low isolation resistance failure. The paper explains how isolation resistance measurements were taken and details the steps taken in both destructive and non-destructive analyses. In theory, infrared hotspot could have been completed along the length of the flex harness to locate the failure site. However, with a field of view of approximately 5 x 5 cm, this technique would have been time prohibitive.


Author(s):  
Bhanu Sood ◽  
Lucas Severn ◽  
Michael Osterman ◽  
Michael Pecht ◽  
Anton Bougaev ◽  
...  

Abstract A review of the prevalent degradation mechanisms in Lithium ion batteries is presented. Degradation and eventual failure in lithium-ion batteries can occur for a variety of dfferent reasons. Degradation in storage occurs primarily due to the self-discharge mechanisms, and is accelerated during storage at elevated temperatures. The degradation and failure during use conditions is generally accelerated due to the transient power requirements, the high frequency of charge/discharge cycles and differences between the state-of-charge and the depth of discharge influence the degradation and failure process. A step-by-step methodology for conducting a failure analysis of Lithion batteries is presented. The failure analysis methodology is illustrated using a decision-tree approach, which enables the user to evaluate and select the most appropriate techniques based on the observed battery characteristics. The techniques start with non-destructive and non-intrusive steps and shift to those that are more destructive and analytical in nature as information about the battery state is gained through a set of measurements and experimental techniques.


Author(s):  
George M. Wenger ◽  
Richard J. Coyle ◽  
Patrick P. Solan ◽  
John K. Dorey ◽  
Courtney V. Dodd ◽  
...  

Abstract A common pad finish on area array (BGA or CSP) packages and printed wiring board (PWB) substrates is Ni/Au, using either electrolytic or electroless deposition processes. Although both Ni/Au processes provide flat, solderable surface finishes, there are an increasing number of applications of the electroless nickel/immersion gold (ENi/IAu) surface finish in response to requirements for increased density and electrical performance. This increasing usage continues despite mounting evidence that Ni/Au causes or contributes to catastrophic, brittle, interfacial solder joint fractures. These brittle, interfacial fractures occur early in service or can be generated under a variety of laboratory testing conditions including thermal cycling (premature failures), isothermal aging (high temperature storage), and mechanical testing. There are major initiatives by electronics industry consortia as well as research by individual companies to eliminate these fracture phenomena. Despite these efforts, interfacial fractures associated with Ni/Au surface finishes continue to be reported and specific failure mechanisms and root cause of these failures remains under investigation. Failure analysis techniques and methodologies are crucial to advancing the understanding of these phenomena. In this study, the scope of the fracture problem is illustrated using three failure analysis case studies of brittle interfacial fractures in area array solder interconnects. Two distinct failure modes are associated with Ni/Au surface finishes. In both modes, the fracture surfaces appear to be relatively flat with little evidence of plastic deformation. Detailed metallography, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), and an understanding of the metallurgy of the soldering reaction are required to avoid misinterpreting the failure modes.


Author(s):  
O. Diaz de Leon ◽  
M. Nassirian ◽  
C. Todd ◽  
R. Chowdhury

Abstract Integration of circuits on semiconductor devices with resulting increase in pin counts is driving the need for improvements in packaging for functionality and reliability. One solution to this demand is the Flip- Chip concept in Ultra Large Scale Integration (ULSI) applications [1]. The flip-chip technology is based on the direct attach principle of die to substrate interconnection.. The absence of bondwires clearly enables packages to become more slim and compact, and also provides higher pin counts and higher-speeds [2]. However, due to its construction, with inherent hidden structures the Flip-Chip technology presents a challenge for non-destructive Failure Analysis (F/A). The scanning acoustic microscope (SAM) has recently emerged as a valuable evaluation tool for this purpose [3]. C-mode scanning acoustic microscope (C-SAM), has the ability to demonstrate non-destructive package analysis while imaging the internal features of this package. Ultrasonic waves are very sensitive, particularly when they encounter density variations at surfaces, e.g. variations such as voids or delaminations similar to air gaps. These two anomalies are common to flip-chips. The primary issue with this package technology is the non-uniformity of the die attach through solder ball joints and epoxy underfill. The ball joints also present defects as open contacts, voids or cracks. In our acoustic microscopy study packages with known defects are considered. It includes C-SCAN analysis giving top views at a particular package interface and a B-SCAN analysis that provides cross-sectional views at a desired point of interest. The cross-section analysis capability gives confidence to the failure analyst in obtaining information from a failing area without physically sectioning the sample and destroying its electrical integrity. Our results presented here prove that appropriate selection of acoustic scanning modes and frequency parameters leads to good reliable correlation between the physical defects in the devices and the information given by the acoustic microscope.


Author(s):  
C. Monachon ◽  
M.S. Zielinski ◽  
D. Gachet ◽  
S. Sonderegger ◽  
S. Muckenhirn ◽  
...  

Abstract Quantitative cathodoluminescence (CL) microscopy is a new optical spectroscopy technique that measures electron beam-induced optical emission over large field of view with a spatial resolution close to that of a scanning electron microscope (SEM). Correlation of surface morphology (SE contrast) with spectrally resolved and highly material composition sensitive CL emission opens a new pathway in non-destructive failure and defect analysis at the nanometer scale. Here we present application of a modern CL microscope in defect and homogeneity metrology, as well as failure analysis in semiconducting electronic materials


Author(s):  
Erik Paul ◽  
Holger Herzog ◽  
Sören Jansen ◽  
Christian Hobert ◽  
Eckhard Langer

Abstract This paper presents an effective device-level failure analysis (FA) method which uses a high-resolution low-kV Scanning Electron Microscope (SEM) in combination with an integrated state-of-the-art nanomanipulator to locate and characterize single defects in failing CMOS devices. The presented case studies utilize several FA-techniques in combination with SEM-based nanoprobing for nanometer node technologies and demonstrate how these methods are used to investigate the root cause of IC device failures. The methodology represents a highly-efficient physical failure analysis flow for 28nm and larger technology nodes.


Author(s):  
J.G. van Hassel ◽  
Xiao-Mei Zhang

Abstract Failures induced in the silicon substrate by process marginalities or process mistakes need continuous attention in new as well as established technologies. Several case studies showing implant related defects and dislocations in silicon will be discussed. Depending on the electrical characteristics of the failure the localization method has to be chosen. The emphasis of the discussion will be on the importance of the right choice for further physical de-processing to reveal the defect. This paper focuses on the localization method, the de- processing technique and the use of Wright etch for subsequent TEM preparation.


Sign in / Sign up

Export Citation Format

Share Document