Effect of rubber particles on properties of abrasion resistant concrete

Author(s):  
Yin Bai ◽  
Yuebo Cai ◽  
Jie Li
Keyword(s):  
2018 ◽  
Vol 91 (4) ◽  
pp. 767-775 ◽  
Author(s):  
Yuanbing Zhou ◽  
Yoshimasa Yamamoto ◽  
Seiichi Kawahara

ABSTRACT Graft copolymerization of vinyltriethoxysilane (VTES) onto NR particles in the latex stage is a unique reaction, since it occurs together with hydrolysis and condensation of the triethoxysilane group of VTES to form a colloidal silica linking to the rubber particles. These reactions may contribute to the formation of a silica nanomatrix structure that consists of a dispersoid of rubber particles as the major component and a silica matrix as the minor component. Here, the graft copolymerization of VTES followed by hydrolysis and condensation is investigated to determine a suitable condition to prepare NR with a silica nanomatrix structure. The mechanical properties of the resulting graft copolymer are discussed in relation to the morphology, silica content, and gel content of the rubber. Based on morphological observations, NR particles with an average diameter of approximately 1 μm are well dispersed in a nanomatrix consisting of silica nanoparticles. The thickness of the silica nanomatrix increases as the monomer concentration increases, and a long incubation time generates large silica nanoparticles. The tensile strength and viscoelastic properties are significantly improved by forming the silica nanomatrix structure, with its continuous structure that prevents the NR particles from merging.


1989 ◽  
Vol 264 (31) ◽  
pp. 18618-18626 ◽  
Author(s):  
M S Dennis ◽  
W J Henzel ◽  
J Bell ◽  
W Kohr ◽  
D R Light

2021 ◽  
Vol 294 ◽  
pp. 123489
Author(s):  
Liyan Wang ◽  
Xing Xiao ◽  
Wenwei Ji ◽  
Aimable Ishimwe ◽  
Binghui Wang ◽  
...  

2021 ◽  
Vol 272 ◽  
pp. 121959
Author(s):  
Quang-Hiếu Lương ◽  
Huy Hoàng Nguyễn ◽  
Jeong-Il Choi ◽  
Hyeong-Ki Kim ◽  
Bang Yeon Lee

2003 ◽  
Vol 268 (2) ◽  
pp. 330-340 ◽  
Author(s):  
Márcia M Rippel ◽  
Lay-Theng Lee ◽  
Carlos A.P Leite ◽  
Fernando Galembeck

2018 ◽  
Vol 6 (3) ◽  
pp. 035703 ◽  
Author(s):  
Tej Singh ◽  
Mukesh Kumar Rathi ◽  
Amar Patnaik ◽  
Ranchan Chauhan ◽  
Sharafat Ali ◽  
...  

2017 ◽  
Vol 305 ◽  
pp. 389-395 ◽  
Author(s):  
Xiaofei Xu ◽  
Xiang Li ◽  
Fengxia Liu ◽  
Wei Wei ◽  
Xiaojuan Wang ◽  
...  

Author(s):  
Jihun An ◽  
Byoung-Hyun Kang ◽  
Byoung-Ho Choi ◽  
Hyoung-Jun Kim

Poly(methylmethacrylate) (PMMA) is one of popular engineering polymers for many engineering applications such as glass substitutes, medical applications, electronic goods, optical fibers, laser disk optical media and so on. PMMA is a lightweight material with excellent optical properties and balanced mechanical properties. However, PMMA is commonly blended with various functional fillers, and rubber particles are one of them to improve the low impact toughness of unfilled PMMA comparing with other engineering polymers such as polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) copolymer and so on. PMMA is generally used to make exterior of a commercial product, so scratch characteristics of PMMA is very important in terms of the aesthetic point of view. In this paper, rubber toughened PMMA plates are prepared by injection molding, and static and progressive scratch tests are performed. Samples are prepared by various injection molding conditions, and two orientations (machine direction and transverse direction) of the injection molded plate are considered for scratch tests. Three scratch damage mechanism stages, i.e. mar/ploughing, whitening and cutting stages, are identified by observing the scratch damages and two critical loads to define the variation of scratch damage mechanisms are recorded to evaluate the scratch resistance of rubber toughened PMMA samples. Scratch damage characteristics are examined by various microscopy techniques such as optical microscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, optical profiler and so on. It is clearly observed that scratch damage characteristics of rubber toughened PMMA are changed sensitively for various test conditions due to rubber particles, so it can be known that the mold design should be carefully optimized to improve scratch characteristics of injection molded rubber toughened PMMA product.


2007 ◽  
Vol 18 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Frederic Bonfils ◽  
Eugene Ejolle Ehabe ◽  
Christian Aymard ◽  
Laurent Vaysse ◽  
Jerome Sainte-Beuve

Sign in / Sign up

Export Citation Format

Share Document