A versatile autonomous navigation algorithm for smart indoor environment using FPGA based robot

Author(s):  
M. C. Chinnaaiah ◽  
Sanjay Dubey ◽  
K Anusha ◽  
P Rajesh Kumar ◽  
T Satya Savithri
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1146 ◽  
Author(s):  
Yincheng Li ◽  
Wenbin Zhang ◽  
Peng Li ◽  
Youhuan Ning ◽  
Chunguang Suo

At present, the method of using unmanned aerial vehicles (UAVs) with traditional navigation equipment for inspection of overhead transmission lines has the limitations of expensive sensors, difficult data processing, and vulnerable to weather and environmental factors, which cannot ensure the safety of UAV and power systems. Therefore, this paper establishes a mathematical model of spatial distribution of transmission lines to study the field strength distribution information around transmission lines. Based on this, research the navigation and positioning algorithm. The data collected by the positioning system are input into the mathematical model to complete the identification, positioning, and safety distance diagnosis of the field source. The detected data and processing results can provide reference for UAV obstacle avoidance navigation and safety warning. The experimental results show that the positioning effect of the positioning navigation algorithm is obvious, and the positioning error is within the range of use error and has good usability and application value.


2018 ◽  
Vol 11 (4) ◽  
pp. 471-485 ◽  
Author(s):  
Bing Hua ◽  
Zhiwen Zhang ◽  
Yunhua Wu ◽  
Zhiming Chen

Purpose The geomagnetic field vector is a function of the satellite’s position. The position and speed of the satellite can be determined by comparing the geomagnetic field vector measured by on board three-axis magnetometer with the standard value of the international geomagnetic field. The geomagnetic model has the disadvantages of uncertainty, low precision and long-term variability. Therefore, accuracy of autonomous navigation using the magnetometer is low. The purpose of this paper is to use the geomagnetic and sunlight information fusion algorithm to improve the orbit accuracy. Design/methodology/approach In this paper, an autonomous navigation method for low earth orbit satellite is studied by fusing geomagnetic and solar energy information. The algorithm selects the cosine value of the angle between the solar light vector and the geomagnetic vector, and the geomagnetic field intensity as observation. The Adaptive Unscented Kalman Filter (AUKF) filter is used to estimate the speed and position of the satellite, and the simulation research is carried out. This paper also made the same study using the UKF filter for comparison with the AUKF filter. Findings The algorithm of adding the sun direction vector information improves the positioning accuracy compared with the simple geomagnetic navigation, and the convergence and stability of the filter are better. The navigation error does not accumulate with time and has engineering application value. It also can be seen that AUKF filtering accuracy is better than UKF filtering accuracy. Research limitations/implications Geomagnetic navigation is greatly affected by the accuracy of magnetometer. This paper does not consider the spacecraft’s environmental interference with magnetic sensors. Practical implications Magnetometers and solar sensors are common sensors for micro-satellites. Near-Earth satellite orbit has abundant geomagnetic field resources. Therefore, the algorithm will have higher engineering significance in the practical application of low orbit micro-satellites orbit determination. Originality/value This paper introduces a satellite autonomous navigation algorithm. The AUKF geomagnetic filter algorithm using sunlight information can obviously improve the navigation accuracy and meet the basic requirements of low orbit small satellite orbit determination.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4322 ◽  
Author(s):  
Caroline Silva ◽  
Átila de Oliveira ◽  
Marcelo Fernandes

This work describes the performance of a DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm) algorithm applied to autonomous navigation in unknown static and dynamic terrestrial environments. The main aim was to validate the functionality and robustness of the DPNA-GA, with variations of genetic parameters including the crossover rate and population size. To this end, simulations were performed of static and dynamic environments, applying the different conditions. The simulation results showed satisfactory efficiency and robustness of the DPNA-GA technique, validating it for real applications involving mobile terrestrial robots.


2020 ◽  
Vol 42 (16) ◽  
pp. 3243-3253 ◽  
Author(s):  
Xiangzhu Zhang ◽  
Lijia Zhang ◽  
Hailong Pei ◽  
Frank L. Lewis

Two common methods exist for solving indoor autonomous navigation and obstacle-avoidance problems using monocular vision: the traditional simultaneous localization and mapping (SLAM) method, which requires complex hardware, heavy calculations, and is prone to errors in low texture or dynamic environments; and deep-learning algorithms, which use the fully connected layer for classification or regression, resulting in more model parameters and easy over-fitting. Among the latter ones, the most advanced indoor navigation algorithm divides a single image frame into multiple parts for prediction, resulting in doubled reasoning time. To solve these problems, we propose a multi-task deep network based on feature map region division for monocular indoor autonomous navigation. We divide the feature map instead of the original image to avoid repeated information processing. To reduce model parameters, we use convolution instead of the fully connected layer to predict the navigable probability of the left, middle, and right parts. We propose that the linear velocity is determined by combining three prediction probabilities to reduce collision risk. Experimental evaluation shows that the proposed method is nine times smaller than the previous state-of-the-art methods; further, its processing speed and navigation capability increase more than five and 1.6 times, respectively.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Oren Gal

Most of the present work for unmanned surface vehicle (USV) navigation does not take into account environmental disturbances such as ocean waves, winds, and currents. In some scenarios, waves should be treated as special case of dynamic obstacle and can be critical to USV’s safety. For the first time, this paper presents unique concept facing this challenge by combining ocean waves' formulation with the probabilistic velocity obstacle (PVO) method for autonomous navigation. A simple navigation algorithm is presented in order to apply the method of USV’s navigation in presence of waves. A planner simulation dealing with waves and obstacles avoidance is introduced.


2013 ◽  
Vol 650 ◽  
pp. 449-454
Author(s):  
Cai Min Chen ◽  
Bao Hua Li ◽  
Chang Hong Wang ◽  
Rui Liu

Aiming at the limitations of the orbital dynamic equations based star sensor navigation method, a star sensor /geomagnetic information utilized aircraft autonomous navigation method is proposed. Dynamic equations applicable to general aircrafts are established. System observation equations are deduced. The angle between geomagnetic and starlight vector is used as observation in the algorithm. Extended Kalman filter is used to estimate position and velocity of aircraft in the algorithm. Singular value decomposition method is used to analyze observability of the system. Simulation results show that the algorithm has many advantages including high precision, good filtering convergence and stability, and non-accumulated error. The algorithm can be used as aided navigation of inertial navigation or in occasions, which only require a general navigation precision.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Li Baohua ◽  
Lai Wenjie ◽  
Chen Yun ◽  
Liu Zongming

An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust.


Sign in / Sign up

Export Citation Format

Share Document