A Low-Noise, Low-Power, and Chopper-Stabilized, Current-Feedback Instrumentation Amplifier for Current Sensing Application

Author(s):  
Peng Xie ◽  
Quanzhen Duan ◽  
Zhen Meng ◽  
Shengming Huang ◽  
Yuemin Ding ◽  
...  
2015 ◽  
Vol 24 (06) ◽  
pp. 1550089 ◽  
Author(s):  
Yin Zhou ◽  
Xiaobo Wu ◽  
Peng Sun ◽  
Menglian Zhao

This paper presents a low-power low-noise instrumentation amplifier (IA) intended for biopotential signal recordings. The IA is designed based on a capacitively-coupled topology, which achieves wide input common-mode range, high common-mode rejection ratio (CMRR) and low power consumption. To reduce low-frequency noise and output ripple at the same time, a combination of chopping and ping-pong auto-zeroing techniques, which is normally used in current-feedback IAs, is introduced for the capacitively-coupled topology in this paper. An intrinsic adverse effect of the proposed structure which causes additional ripple is analyzed. The DC electrode offset voltage is suppressed and the input impedance is boosted through feedback techniques. An improved switched-capacitor common mode feedback (SC CMFB) circuit is also presented. Test results show that the IA achieves an equivalent input-referred noise power spectrum density of 60 nV/sqrtHz and a noise efficiency factor (NEF) of 5.58. The bandwidth is 0.5 Hz to 10 kHz, covering most biopotential recording applications. The IA was implemented in 0.18-μm CMOS process. It occupies 0.27 mm2 core area and consumes 3.6 μA from a 1 V supply.


2021 ◽  
Vol 11 (17) ◽  
pp. 7982
Author(s):  
Gyuri Choi ◽  
Hyunwoo Heo ◽  
Donggeun You ◽  
Hyungseup Kim ◽  
Kyeongsik Nam ◽  
...  

In this paper, a low-power and low-noise readout circuit for resistive-bridge microsensors is presented. The chopper-stabilized, recycling folded cascode current-feedback instrumentation amplifier (IA) is proposed to achieve the low-power, low-noise, and high-input impedance. The chopper-stabilized, recycling folded cascode topology (with a Monticelli-style, class-AB output stage) can enhance the overall noise characteristic, gain, and slew rate. The readout circuit consists of a chopper-stabilized, recycling folded cascode IA, low-pass filter (LPF), ADC driving buffer, and 12-bit successive-approximation-register (SAR) analog-to-digital converter (ADC). The prototype readout circuit is implemented in a standard 0.18 µm CMOS process, with an active area of 12.5 mm2. The measured input-referred noise at 1 Hz is 86.6 nV/√Hz and the noise efficiency factor (NEF) is 4.94, respectively. The total current consumption is 2.23 μA, with a 1.8 V power supply.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850157
Author(s):  
Tao Yin ◽  
Guocheng Huang ◽  
Xiaodong Xu ◽  
Yachao Zhang ◽  
Xinxia Cai ◽  
...  

This paper presents a low-power low-noise instrumentation amplifier (IA) for bio-potential recording. The proposed IA is based on a novel Gm-RSC structure, whose gain is determined by the transconductance (Gm) and the equivalent resistance ([Formula: see text]) of the switched-capacitor (SC) load. The transconductance amplifier stage is based on the current-reuse telescope topology to achieve low noise at low-power dissipation. A resistor-controlled oscillator is designed to generate desirable operational frequency for SC load and to continuously tune the mid-band gain of the IA for different biomedical applications. Measurement results show that the input referred noise of the proposed IA is about 1.27[Formula: see text][Formula: see text]VRMS ([Formula: see text][Formula: see text]Hz) and the noise efficiency factor is 3.3. The range of tunable gain is from 28 to 40[Formula: see text]dB. The common mode rejection ratio and power supply rejection ratio at 50[Formula: see text]Hz are 72 and 78[Formula: see text]dB, respectively. The IA consumes only 660[Formula: see text]nA current at 1.2[Formula: see text]V supply and the active area of the IA is only 0.035[Formula: see text]mm2.


Sign in / Sign up

Export Citation Format

Share Document