Modeling and Analysis on the Nonlinear Dynamics Turning-model of the High-temperature Ladle Carrier Vehicle

Author(s):  
Chen Hui ◽  
Zhang Weidong ◽  
Deng Hua ◽  
Li Xianghua
2021 ◽  
Vol 11 (11) ◽  
pp. 5109
Author(s):  
Guozhi Li ◽  
Yihua Cao ◽  
Maosheng Wang

This article describes the results of modeling and analysis of a generic internal cargo system using a discretization method of the vector mechanics. The model can be easily incorporated into a tandem helicopter model and is intended for use of simulation and investigating the problems of flight dynamics, control, etc., both in flight operation loading a cargo and flight operation in the process of airdrops. The model is derived by considering the main descriptions of the cargo, including the linear and rotational dynamics, the kinematics, and the forces and moments acting on the helicopter. A simulation method embedded with a numerical trim algorithm is developed for the complete coupling helicopter/cargo nonlinear dynamics system. The simulation application of the model is illustrated, including the case of flight operation loading a cargo by considering three mass configurations of 3000, 4500, and 6000 kg, and the case of flight operation in the process of airdrops at velocities of 0, 40, 80, 120, and 160 knots. Stabilities of the helicopter in the process of airdrops are also analyzed. The major conclusions drawn are: (i) the tandem helicopter has a good attitude maintaining ability in the whole flight velocity envelope when it conducts a flight operation loading a cargo; (ii) in the process of airdrops, the increase in flight velocity will constantly decrease the helicopter pitching attitude and increases the total airdrop time and decreases the backward moving velocity of the cargo, and helicopter flying at a velocity between 80 and 120 knots might be acceptable; (iii) the stabilities of both the longitudinal and lateral periodic modes are continuing to decrease during the backward movement of the cargo.


2012 ◽  
Vol 178-181 ◽  
pp. 1287-1292
Author(s):  
Rong Guo Hou ◽  
Bo Tian ◽  
Lei Quan

The melting point of polypropylene geotextile is 170 centigrade. However, during the repaving design of the old cement concrete pavement, the paving temperature of the asphalt mixture is often 160-170 centigrade or above. Therefore, it is very important to verify that whether the polypropylene geotextile can be paved under a high temperature. Through the modeling and analysis of temperature fields and relevant temperature tests in the laboratory, the paper has tested the surface temperatures of the polypropylene geotexile when the asphalt mixture is paved under a high temperature. The results show that, under a simulated paving temperature of over 190 centigrade, the highest temperature of polypropylene geotextile is only about 160 centigrade, which is lower than its melting point. Therefore, the polypropylene geotextile can be used for the paving under a high temperature.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001105-001115 ◽  
Author(s):  
Z. Cole ◽  
B. Passmore ◽  
B. Whitaker ◽  
A. Barkley ◽  
T. McNutt ◽  
...  

The packaging design and development of an on-board bi-directional charger for the battery system of the next generation Toyota Prius plug-in hybrid electric vehicle (PHEV) will be presented in this paper. The charger implements a multichip power module (MCPM) packaging strategy. The Silicon Carbide (SiC) MCPM charger is capable of operating to temperatures in excess of 200°C and at switching frequencies in excess of 500 kHz, significantly reducing the overall size and weight of the system in comparison with Toyota's present silicon-based Prius charger. The present actively cooled Si charger is capable of delivering a peak power of 1kW at less than 90 percent efficiency, is limited to less than 50 kHz switching, and measures greater than 6.3 liters with a mass of 6.6 kg, resulting in a power density of 150 W/kg. The passively cooled SiC MCPM charger presented herein was designed to deliver a peak power of 5 kW at greater than 96% efficiency, while measuring less than 0.9 liters with a mass of 1 kg, resulting in a power density greater than 5 kW/kg. Thus, the novel SiC MCPM charger represents an increase in power density of more than 30×, a very significant power density achievement in size and weight for sensitive mobile applications such as PHEVs. This paper will discuss the overall mechanical design of the SiC MCPM charger, the finite-element modeling and analysis of thermal and stress considerations, characterization and parasitic analysis of the MCPM, and the development of high temperature solutions for SiC devices.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000208-000213 ◽  
Author(s):  
Z. Cole ◽  
B. McGee ◽  
J. Stabach ◽  
C. B. O'Neal ◽  
B. Passmore

In this work, a compact 600 – 1700 V high current power package housing either silicon carbide (SiC) or gallium nitride (GaN) power die was designed and developed. Several notable configurations of the package include diode half-bridges, co-packed MOSFET-diode pairs, and cascode configured GaN devices. In order to avoid a significant redesign effort for each new application or improvement in device technology, a device-neutral design strategy enables the use of a variety of die types from any manufacturer depending on the end-use application's requirements. The basic SOT-227 is a widely used package type found in everything from electronic welders and power supplies to motor controls and inverters. This module is a variant of that style of package which also addresses some issues that a standard SOT-227 package has when used in higher voltage applications; it has increased creepage and clearance distances which meet IPC, UL, and IEC standards up to 1700 volts while retaining an isolated substrate. It also has low parasitic values in comparison to the SOT-227. One of the key elements of this design is the removal of the baseplate. This allows for far lower weight, volume, and cost as well as reduced manufacturing complexity. The wide bandgap power package is composed of high temperature capable materials, which allow for the high junction temperatures inherent in these high power density devices. This paves the way for the design of a small, low-profile package with low parasitic inductances and a small junction-to-case thermal resistance. This paper will discuss the mechanical design of the power package as well as the three-dimensional finite-element modeling and analysis of the thermal, electrical, and mechanical characteristics. In addition, the electrical characteristics as a function of temperature of the power module up to 225 °C will be presented.


2020 ◽  
Vol 28 (1) ◽  
pp. 76-85
Author(s):  
Wei Wei ◽  
Chao-long Yuan ◽  
Ren-dong Wu ◽  
Wei Jiao ◽  
Ding-chuan Liang

Sign in / Sign up

Export Citation Format

Share Document