Experimental Investigation of Relationship between Cutting Force, Vibration Frequency and Temperature Gradient During Robotic Assisted Bone Drilling

Author(s):  
A. Orelaja Oluseyi ◽  
Xingsong Wang ◽  
Kaiwei Ma ◽  
Tianzheng Zhao ◽  
Dauda Sh. Ibrahim ◽  
...  
Author(s):  
LJ. Tanovic ◽  
P. Bojanic ◽  
R. Puzovic ◽  
S. Klimenko

This paper offers an experimental study of the microcutting mechanisms in marble grinding to aid the optimization of the marble grinding process. The necessity for investigating these mechanisms is dictated by the increased use of marble in many applications and the fact that grinding and polishing processes are the dominant technologies used to meet surface finish requirements in this natural material. The experiments are aimed at the determination of the normal component of the cutting force and of the grain traces in microcutting with a single diamond grain. The investigations carried out make provisions for establishing critical grain penetration and cutting depths and allow the prediction of the normal cutting force component as a function of grain penetration speed and depth.


2014 ◽  
Author(s):  
Zh. Kang ◽  
Yunhe Zhai ◽  
Ruxin Song ◽  
Liping Sun

In this paper, model tests were carried out to investigate two degrees of freedom VIV of horizontally-laid cylinders with diameters of 5cm, 11cm, 20cm and length 120cm and compared their vibration trajectories. The test results showed that the in-line and cross-flow vibration frequency of different scale cylinders demonstrate “multi frequency” phenomenon, that is, the in-line vibration frequency is not only twice but also once or four times as much as the cross-flow vibration frequency in some scale, natural frequency and reduced velocity conditions. Also, the cross-flow multi-frequency vibration phenomenon occurred. The trajectory of the vibration cylinder differentiated from the traditional “8” shape accordingly. The vibration trajectory, especially of small-scale cylinder, changed in most conspicuous manner. Through the initial research and analysis, it was found that in addition to in-line and cross-flow natural vibration frequency and the flow velocity, the shape of cylinders was also one of the main causes leading to different vibration trajectory forms.


2018 ◽  
Vol 764 ◽  
pp. 279-290
Author(s):  
X.D. Wang ◽  
W.L. Ge ◽  
Y.G. Wang

The characteristics of cutting forces vibration and its effects to the hole quality in reaming aluminum cast alloy using a poly-crystalline diamond (PCD) step reamer in dry and wet conditions were studied. First, centrifugal force vibration model of the PCD step reamer during machining process was established and through the analysis of the model, it can be concluded that the maximum amplitude of the vibration is positively related to the angular velocity of the reamer. Then, thrust force and cutting torque were measured by a Kistler Dynamometer during reaming process and these vibration frequency and amplitude were analyzed by fast Fourier transformation (FFT). Hole quality was evaluated by hole diameter and surface roughness. Results show that, as the spindle speed increases, the stability of thrust force and cutting torque deteriorates gradually, and there was a severe vibration in the cutting force and the surface roughness when the spindle speed reached 10000 rpm in wet and 7000 rpm in dry cutting conditions. Compared the variation of hole surface roughness and vibration characteristic of cutting forces, it can be observed that the trends are very consistent, the surface roughness deteriorates when cutting forces become unstable. Therefore,the cutting forces stability was an important factor that influence the hole quality. Cutting fluid has a positive effect to stabilize the reaming process and was beneficial to improve the hole quality.


Sign in / Sign up

Export Citation Format

Share Document