Upper Limb Exoskeleton Control System

Author(s):  
S. F. Jatsun ◽  
E. V. Saveleva ◽  
A. S. Yatsun ◽  
A. A. Postolny
Author(s):  
Logan T. Chatfield ◽  
Benjamin C. Fortune ◽  
Lachlan R. McKenzie ◽  
Christopher G. Pretty

Abstract This study considers the development of an assist-as-need torque controller for an exoskeleton for stroke rehabilitation. Studies have shown that active patient participation improves the patient’s recovery from stroke. Assist-as-need control, providing the patient with the assistance they need to complete a task, is desirable, as the assistance can be varied to maximise patient participation. However, research is limited, and current methods cannot guarantee optimal assistance as non-zero assistive forces are still provided to subjects that are capable of completing the task unassisted. This study proposes a control system to vary and optimise the assistance for a subject based on their capabilities. A particle filter developed from previous research is used to estimate the subject’s voluntary effort. The assistive torque is determined from a target torque and the voluntary effort. The controller is shown to be effective, as zero assistance is provided to a subject capable of completing the task unassisted. Additionally, the assistance will increase if the subject fatigues. Using the estimate of the subject’s strength, the assistive torque can be accurately set to maximise a patient’s participation, and therefore, the assist-as-need controller can lead to improved therapeutic results.


2021 ◽  
Author(s):  
Bianca Lento ◽  
Yannick Aoustin ◽  
Teresa Zielinska

Abstract Robotic exoskeletons inspired by the animal’s external covering are wearable systems that enhance human power, motor skills, or support the movement. The main difficulty, apart from the mechanical structure design, is the development of an exoskeleton control system, as it should recognize the movement intended by the user and assist in its execution. This work is devoted to the exoskeleton of the upper limbs that supports movement. The method of controlling the exoskeleton by means of electromyograms (EMG) was presented. EMG is a technique for recording and assessing the electrical activity produced by skeletal muscles. The main advantage of EMG based control is the ability to forecast intended motion, even if the user is unable to generate it. This work aims to define strategies for controlling the exoskeleton of the upper limb in children suffering from neuromuscular diseases. Such diseases gradually reduce the mobility of the lower and upper limbs. These children are wheelchair bound, so it was assumed that the upper limb exoskeleton could be attached to a wheelchair. EMG signals are recorded, amplified and filtered. An artificial neural network using fuzzy logic to process EMG was used. This network predicts movement trajectories. Using this forecast and taking into account the feedback information, the control system generates the appropriate drive torques.


Author(s):  
Brahim Brahmi ◽  
Khaled El-Monajjed ◽  
Mohammad Habibur Rahman ◽  
Tanvir Ahmed ◽  
Claude El-Bayeh ◽  
...  

2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


Author(s):  
Stefano Dalla Gasperina ◽  
Keya Ghonasgi ◽  
Ana C. de Oliveira ◽  
Marta Gandolla ◽  
Alessandra Pedrocchi ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1069
Author(s):  
Deyby Huamanchahua ◽  
Adriana Vargas-Martinez ◽  
Ricardo Ramirez-Mendoza

Exoskeletons are an external structural mechanism with joints and links that work in tandem with the user, which increases, reinforces, or restores human performance. Virtual Reality can be used to produce environments, in which the intensity of practice and feedback on performance can be manipulated to provide tailored motor training. Will it be possible to combine both technologies and have them synchronized to reach better performance? This paper consists of the kinematics analysis for the position and orientation synchronization between an n DoF upper-limb exoskeleton pose and a projected object in an immersive virtual reality environment using a VR headset. To achieve this goal, the exoskeletal mechanism is analyzed using Euler angles and the Pieper technique to obtain the equations that lead to its orientation, forward, and inverse kinematic models. This paper extends the author’s previous work by using an early stage upper-limb exoskeleton prototype for the synchronization process.


2018 ◽  
Vol 8 (3) ◽  
pp. 464 ◽  
Author(s):  
Xin Wang ◽  
Qiuzhi Song ◽  
Xiaoguang Wang ◽  
Pengzhan Liu

Author(s):  
Mikkel Thogersen ◽  
Muhammad Ahsan Gull ◽  
Frederik Victor Kobbelgaard ◽  
Mostafa Mohammadi ◽  
Stefan Hein Bengtson ◽  
...  

2014 ◽  
Vol 701-702 ◽  
pp. 654-658 ◽  
Author(s):  
Yuan Zhang ◽  
Qiang Liu ◽  
Ji Liang Jiang ◽  
Li Yuan Zhang ◽  
Rui Rui Shen

A new upper limb exoskeleton mechanical structure for rehabilitation train and electric putters were used to drive the upper limb exoskeleton and kinematics simulation was carried. According to the characteristics of upper limb exoskeleton, program control and master - slave control two different ways were presented. Motion simulation analysis had been done by Pro/E Mechanism, the motion data of electric putter and major joints had been extracted. Based on the analysis of the movement data it can effectively guide the electric putter control and analysis upper limb exoskeleton motion process.


Sign in / Sign up

Export Citation Format

Share Document