external covering
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Bianca Lento ◽  
Yannick Aoustin ◽  
Teresa Zielinska

Abstract Robotic exoskeletons inspired by the animal’s external covering are wearable systems that enhance human power, motor skills, or support the movement. The main difficulty, apart from the mechanical structure design, is the development of an exoskeleton control system, as it should recognize the movement intended by the user and assist in its execution. This work is devoted to the exoskeleton of the upper limbs that supports movement. The method of controlling the exoskeleton by means of electromyograms (EMG) was presented. EMG is a technique for recording and assessing the electrical activity produced by skeletal muscles. The main advantage of EMG based control is the ability to forecast intended motion, even if the user is unable to generate it. This work aims to define strategies for controlling the exoskeleton of the upper limb in children suffering from neuromuscular diseases. Such diseases gradually reduce the mobility of the lower and upper limbs. These children are wheelchair bound, so it was assumed that the upper limb exoskeleton could be attached to a wheelchair. EMG signals are recorded, amplified and filtered. An artificial neural network using fuzzy logic to process EMG was used. This network predicts movement trajectories. Using this forecast and taking into account the feedback information, the control system generates the appropriate drive torques.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12279
Author(s):  
Caterina Longo ◽  
Roberta Trani ◽  
Carlotta Nonnis Marzano ◽  
Maria Mercurio ◽  
Tamara Lazic ◽  
...  

Poriferans, as sessile organisms without rigid external covering, use secondary metabolites for protection from predators and fouling organisms. The present study tested the antifouling activity of ethanolic extract of the Mediterranean alien calcareous sponge Paraleucilla magna towards juvenile mussels Mytilus galloprovincialis. Furthermore, toxicity tests on nauplii of brine shrimp Artemia salina and two microalgae strains, Nannochloropsis sp. and Tetraselmis suecica, were also conducted. A total attachment inhibition of M. galloprovincialis was achieved at a concentration of 400 µg/mL of sponge extract. The 50% mortality of A. salina nauplii was recorded at a concentration of 500 µg/mL of ethanolic extract. The growth inhibitory effect on both marine microalgae strains has been registered at a concentration of 300 µg/mL. Our results suggest promising natural antifouling activity and low toxicity of the ethanolic extract of P. magna that could be used as antifouling compound.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Phatu W. Mashela ◽  
Ebrahim Shokoohi

AbstractAfter hatch, second-stage juveniles (J2) of root-knot (Meloidogyne species) nematodes could spend at least 12 weeks in soil solutions searching for penetration sites of suitable host plants. The external covering of nematodes, the cuticle, consists of various layers that contain glycoproteins, lipids, soluble proteins (collagens) and insoluble proteins (cuticulins). Generally, cucurbitacins are lipophilic, but there is scant information on how cuticular proteins relate to these complex terpenoids. A study was conducted to investigate the nature and extent of damage post-exposure of J2 to a wide range of Nemafric-BL phytonematicide concentrations. Post-72 h exposure to Nemafric-BL phytonematicide, nematode morphometrics versus phytonematicides exhibited either negative quadratic, positive quadratic, or negative linear relations, with the models explained by significant (P < 0.05) associations (R-squared). Similarly, total proteins versus phytonematicide exhibited significant negative quadratic relations. The principal component analysis indicated that concentration level of 2–4% of Nemafric-BL phytonematicide have the highest impact on the morphometric changes of J2. In conclusion, the nature and extent of damage suggested that Nemafric-BL phytonematicide was highly nematicidal as opposed to being nematostatic, thereby explaining its potent suppressive effects on nematode population densities.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4367
Author(s):  
William Hideki Ito ◽  
Anna Maria Ferrero ◽  
Paulo Ivo Braga de Queiroz

Bowing is a pathology known by the deformation experienced in some external covering systems in ornamental stones, especially in marble, and thermal action is one of the key factors that lead to this degradation. Previous studies presented remarkable contributions about the mechanical behavior of bowing but they were based on classical beam’s theory and improper assumptions might mislead the evaluation of internal stresses. This study proposes to evaluate internal stresses in bowing due to thermal loading considering the true deformed shape in continuum media. Finite displacement concepts are proposed to calculate stress-strain relationship and comparison with linear elastic theory is also addressed. Internal stresses not predictable in the Euler-Bernoulli beam were found in parametric analyses. Moreover, the numerical analysis accomplished in this paper indicates that transient heat flux should induce higher stresses than just considering higher gradients of temperature in steady flux which could explain the larger decohesion through width in bowing tests.


Author(s):  
Esme Abbot ◽  
Amanda de Oliveira Barros ◽  
James Yang

Abstract Human hands play a key role in almost all activities of daily living (ADLs) because it is an incredibly versatile tool capable of complex motion. For individuals who have had a complete loss of the hand, the ability to perform ADLs is impaired. Effective prosthetics accurately simulate the movements of a human hand by providing a high number of degrees of freedom, an efficient control system, and an anthropomorphic appearance. In this paper, the design and construction process of a highly anthropomorphic soft robotic prosthetic hand is outlined. The design specifications of the hand are based on feedback from current and former prosthetic users. The hand endoskeleton was 3D printed using fused deposition modeling techniques and was enclosed in a silicone coating modeled, after a real human hand. The hand presents anthropomorphic design in its realistic bone shapes and in its external covering that is like skin in texture and mechanical properties. The hand utilizes the flexibility of silicone instead of antagonistic tendons which would otherwise add complexity and weight to the prosthetic design. The prototype also includes adduction/abduction of the fingers, which is a common omitted movement in other prosthetics. Testing showed that the hand is capable of effective power and precision grasping.


Author(s):  
Linda Makovická Osvaldová ◽  
Iveta Marková ◽  
Miroslava Vandlíčková ◽  
Stanislava Gašpercová ◽  
Michal Titko

The article deals with selected upholstery flammability test materials that, in the case of fire, can cause fire spread. For the research, frequently used materials for upholstery based on polyester were utilized: imitation leather, suede, and microplush. Initiation of initiating spontaneous flammability with various sources of ignition were measured including a smoldering cigarette and a match flame. Results were measured as smoldering time and length of the burnt-though sample. Upholstery materials are an integral part of seat construction. To be used in transport, upholstered material must meet safety measures such as the strength, sanitariness, and fire resistance. All tests were performed in accordance with applicable technical standards. Impact assessment of the sample (weight) on “smoldering time” and “length of degradation” was carried out using an ANOVA. Significant differences in length of degradation was observed between samples. Tests cannot provide reliable information about the flammability course of the final product. Upholstery is composed of external covering, of inner liner, and padding. Results of the research presented in this paper indicate the need to continue the research in a broader aspect.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3081 ◽  
Author(s):  
Francisco J. Rescalvo ◽  
Chihab Abarkane ◽  
Elisabet Suárez ◽  
Ignacio Valverde-Palacios ◽  
Antolino Gallego

The paper presents an experimental analysis of the bending behavior of pine beams (Pinus Sylvester) retrofitted with fiber reinforced plastic (FRP) and poplar planks used as external covering. Poplar wood was chosen because of its rapid growth in planted forests, its homogeneity and attributes for sustainable local development, and high CO2 absorption rate. Vibration tests were also conducted in order to evaluate the stiffness in a non-destructive way and compare it with that obtained by means of the destructive tests. Three types of reinforcement were compared, namely: basalt fabric (FB), carbon fabric (FC) and carbon laminate (LC). In addition, some pine beams were reinforced only with poplar planks and used as control specimens in order to evaluate the improvement provided by the FRP. It was observed that a strong delamination preceded the final breakage of beam. Moreover, the results indicated that stiffness is provided mainly by the poplar plank and not by the FRP, as was expected.


2019 ◽  
Vol 9 (14) ◽  
pp. 2897 ◽  
Author(s):  
Maryam Muhammad Mailafiya ◽  
Kabeer Abubakar ◽  
Abubakar Danmaigoro ◽  
Samaila Musa Chiroma ◽  
Ezamin Bin Abdul Rahim ◽  
...  

Cockle shell is an external covering of small, salt water edible clams (Anadara granosa) that dwells in coastal area. This abundant biomaterial is hard, cheap and readily available with high content of calcium carbonate in aragonite polymorphic form. At present, cockle shell-derived calcium carbonate nanoparticles (CSCaCO3NPs) with dual applications has remarkably drawn significant attention of researchers in nanotechnology as a nanocarrier for delivery of different categories of drugs and as bone scaffold due to its beneficial potentials such as biocompatibility, osteoconductivity, pH sensitivity, slow biodegradation, hydrophilic nature and a wide safety margin. In addition, CSCaCO3NP possesses structural porosity, a large surface area and functional group endings for electrostatic ion bonds with high loading capacity. Thus, it maintains great potential in the drug delivery system and a large number of biomedical utilisations. The pioneering researchers adopted a non-hazardous top-down method for the synthesis of CSCaCO3NP with subsequent improvements that led to the better spherical diameter size obtained recently which is suitable for drug delivery. The method is therefore a simple, low cost and environmentally friendly, which involves little procedural steps without stringent temperature management and expensive hazardous chemicals or any carbonation methods. This paper presents a review on a few different types of nanoparticles with emphasis on the versatile most recent advancements and achievements on the synthesis and developments of CSCaCO3NP aragonite with its applications as a nanocarrier for drug delivery in nanomedicine.


2017 ◽  
Vol 742 ◽  
pp. 463-470 ◽  
Author(s):  
Magdalena Maderthaner ◽  
Alexander Jarosik ◽  
Gerhard Angeli ◽  
Roland Haubner

There is a growing demand for Advanced High Strength Steels (AHSS) in the automotive industry owing to their high specific strength and good formability. The mechanical properties satisfy the demands for improved passenger safety and decreased vehicle weight due to thinner cross sections. Hot-dip galvanizing is a common procedure to prevent corrosion of steel, galvanized steel forms the basis for further processing like organic coating. Industrially, the steel strip is annealed at 840 °C in 5 % H2 in N2 at a dew point (DP) of -30 °C. These conditions are reducing for Fe, but oxidizing for oxygen-affine alloying elements as Mn, Si and Cr. These ignoble elements form an external, covering oxide layer on the steel surface, which exhibits poor wettability for the Zn(Al, Fe)-bath. The liquid Zn(Al, Fe) has a temperature of 460 °C and contains 0,2 wt% Al to form a Fe2Al5-xZnx-layer to inhibit the growth of Fe-Zn-intermetallics. Along with the increased amount of alloying elements to improve strength and ductility of AHSS the evolving oxide layer after annealing at the steel surface deteriorates hot-dip galvanizing. The question arises what happens to the surface oxides during immersion in the Zn(Fe, Al)-bath. For this purpose annealed as well as annealed and galvanized 0.8Si-AHSS and 1.5Si-AHSS were compared by glow discharge optical emission spectroscopy (GD-OES) depth profiles. Galvanized specimens show fewer oxides at the steel-zinc-interface as annealed specimens. A possible explanation is an aluminothermic reduction of oxides by 0.2 wt% dissolved Al in the Zn(Al, Fe)-bath. Al is thermodynamically more affine to oxygen than Mn and Si and may reduce Mn- and Si-oxides. An alternative theory is the dissolution of Fe in Zn during reactive wetting, as a side effect the oxides are rinsed off too. Additionally, the influence of DP was investigated. According to Wagner’s theory of selective oxidation, a higher amount of oxygen in the annealing atmosphere leads to internal oxidation of the alloying elements. Experiments were carried out with 0.8Si-AHSS and 1.5Si-AHSS by altering the DP during annealing from -30 °C (380 ppm H2O) to 0 °C (6000 ppm H2O). Oxidation mode changed from external (DP -30 °C) to internal oxidation along grain boundaries (DP 0 °C), as predicted by Wagner. These oxide-free surface provides good reactivity to enhance reactive wetting with the Zn(Fe, Al)-bath and form a dense Fe2Al5-xZnx-layer.


2017 ◽  
Vol 39 (2) ◽  
pp. 133-141
Author(s):  
Nicolás Glison ◽  
Luis Viega ◽  
Pablo Speranza

Abstract: Paspalum dilatatum Poir. is a promising perennial summer grass forage for temperate regions, but among other factors, slow stand establishment has hindered its adoption. One of the reasons may be seed dormancy. Intraspecific variability in seed dormancy has been reported in P. dilatatum, but the mechanisms underlying this variability remain unclear. In this paper, we focus on the role of seed external covering structures on germination, particularly the lemma. Seeds of apomictic and sexual biotypes of P. dilatatum were subjected to acid scarification and removal of the lemma to study their germination, imbibition rate and sensitivity to ABA. Seeds without lemma showed higher germination than other treatments in dormant genotypes. We found that the lemma delayed but did not prevent water uptake in any genotype. Comparing sexual biotypes, P. dilatatum subsp. flavescens showed higher lemma-imposed dormancy than P. dilatatum “Virasoro”, and also higher seed dormancy at the caryopsis level. The thickness of the lemma was not different between these biotypes, so this trait did not explain differences in dormancy. Intraspecific variability of seed dormancy in this species may be attributable to the lemma incidence, however differences in the caryopsis component of seed dormancy should be considered.


Sign in / Sign up

Export Citation Format

Share Document