Implementation of GPS High-Precision Positioning Post-Processing Technique

Author(s):  
Lin Zhao ◽  
Chen Huang ◽  
Ji-cheng Ding ◽  
Xin-zhe Wang
2012 ◽  
Vol 47 (2) ◽  
pp. 35-46 ◽  
Author(s):  
Panithan Srinuandee ◽  
Chalermchon Satirapod ◽  
Clement Ogaja ◽  
Hung-Kyu Lee

Optimization of Satellite Combination in Kinematic Positioning Mode with the Aid of Genetic AlgorithmThe basis of high precision relative positioning is the use of carrier phase measurements. Data differencing techniques are one of the keys to achieving high precision positioning results as they can significantly reduce a variety of errors or biases in the observations and models. Since GPS observations are usually contaminated by many errors such as the atmospheric biases, the receiver clock bias, the satellite clock bias, and so on, it is impossible to model all systematic errors in the functional model. Although the data differencing techniques are widely used for constructing the functional model, some un-modeled systematic biases still remain in the GPS observations following such differencing. Another key to achieving high precision positioning results is to fix the initial carrier phase ambiguities to their theoretical integer values. To obtain a high percentage of successful ambiguity-fixed rates, noisy GPS satellites have to be identified and removed from the data processing step. This paper introduces a new method using genetic algorithm (GA) to optimize the best combination of GPS satellites which yields the highest number of successful ambiguity-fixed solutions in kinematic positioning mode. The results indicate that the use of GA can produce higher number of ambiguity-fixed solutions than the standard data processing technique.


2011 ◽  
Vol 131 (3) ◽  
pp. 275-282
Author(s):  
Kenta Seki ◽  
Hiroaki Matsuura ◽  
Makoto Iwasaki ◽  
Hiromu Hirai ◽  
Soichi Tohyama

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1830
Author(s):  
Yiheng Zhou ◽  
Baoquan Kou ◽  
He Zhang ◽  
Lu Zhang ◽  
Likun Wang

The multi-degree-of-freedom high-precision positioning system (MHPS) is one of the key technologies in many advanced industrial applications. In this paper, a novel hyperbolic magnetic field voice coil actuator using a rhombus magnet array (HMF-VCA) for MHPS is proposed. Benefiting from the especially designed rhombus magnet array, the proposed HMF-VCA has the advantage of excellent force uniformity, which makes it suitable for multi-degree-of-freedom high-precision positioning applications. First, the basic structure and operation principles of the HMF-VCA are presented. Second, the six-degree-of-freedom force and torque characteristic of the HMF-VCA is studied by three-dimensional finite element analysis (3-D FEA). Third, the influence of structural parameters on force density and force uniformity is investigated, which is conducive to the design and optimization of the HMF-VCA. Finally, a prototype is constructed, and the comparison between the HMF-VCA and conventional VCAs proves the advantage of the proposed topology.


2016 ◽  
Vol 139 ◽  
pp. 120-129 ◽  
Author(s):  
Sumedh M. Joshi ◽  
Peter J. Diamessis ◽  
Derek T. Steinmoeller ◽  
Marek Stastna ◽  
Greg N. Thomsen

MAPAN ◽  
2014 ◽  
Vol 30 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Rajat Sen ◽  
Chinmoy Pati ◽  
Samik Dutta ◽  
Ranjan Sen

Sign in / Sign up

Export Citation Format

Share Document