State of the Art Low Power (42mW per flip-flop) 150GHz+ CML Static Divider Implemented in Scaled 0.2 m Emitter-width InP DHBTs

Author(s):  
D.A. Hitko ◽  
T. Hussain ◽  
D.S. Matthews ◽  
R.D. Rajavel ◽  
I. Milosavljevic ◽  
...  
Keyword(s):  
Author(s):  
Kunwar Singh ◽  
Satish Chandra Tiwari ◽  
Maneesha Gupta

This chapter presents a comprehensive overview of the conventional fully static master slave flip-flops used in low power VLSI systems where power budget is critical. In addition, the chapter also presents alternative realization of fully static master-slave flip-flops utilizing a modified feedback strategy. The flip-flops designed on the basis of modified architecture have been explained in detail and compared with state-of-the-art master slave flip-flop designs available in the literature. Extensive capacitance calculations have been performed in terms of clock load and capacitance at internal nodes has also been estimated for all the flip-flop configurations. This is executed in order to compare their relative power and delay characteristics which are well supported by simulation results.


2002 ◽  
Vol 11 (01) ◽  
pp. 51-55
Author(s):  
ROBERT C. CHANG ◽  
L.-C. HSU ◽  
M.-C. SUN

A novel low-power and high-speed D flip-flop is presented in this letter. The flip-flop consists of a single low-power latch, which is controlled by a positive narrow pulse. Hence, fewer transistors are used and lower power consumption is achieved. HSPICE simulation results show that power dissipation of the proposed D flip-flop has been reduced up to 76%. The operating frequency of the flip-flop is also greatly increased.


2008 ◽  
Author(s):  
Giancarlo Prati ◽  
Luca Potì ◽  
Antonella Bogoni

2021 ◽  
Author(s):  
Yugal Maheshwari ◽  
Kleber Stangherlin ◽  
Derek Wright ◽  
Manoj Sachdev

2019 ◽  
Vol 54 (2) ◽  
pp. 550-559 ◽  
Author(s):  
Yunpeng Cai ◽  
Anand Savanth ◽  
Pranay Prabhat ◽  
James Myers ◽  
Alex S. Weddell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document