Chaotic Behaviors of Half Car Model Excited by the Road Surface Profile

Author(s):  
Can Wu ◽  
Weirui Wang
2008 ◽  
Vol 13 (7) ◽  
pp. 1373-1383 ◽  
Author(s):  
Grzegorz Litak ◽  
Marek Borowiec ◽  
Michael I. Friswell ◽  
Kazimierz Szabelski

PAMM ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 10893-10894 ◽  
Author(s):  
Grzegorz Litak ◽  
Marek Borowiec

2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Lawrence Atepor ◽  

Chaotic Vibrations are considered for a quarter-car model excited by the road surface profile. The equation of motion is obtained in the form of a classical Duffing equation and it is modeled with deliberate introduction of parametric excitation force term to enable us manipulate the behavior of the system. The equation of motion is solved using the Method of Multiple Scales. The steady-state solutions with and without the parametric excitation force term is investigated using NDSolve MathematicaTM Code and the nonlinear dynamical system’s analysis is by a study of the Bifurcations that are observed from the analysis of the trajectories, and the calculation of the Lyapunov. In making the system more strongly nonlinear the excitation amplitude value is artificially increased to various multiples of the actual value. Results show that the system’s response can be extremely sensitive to changes in the amplitude and the that chaos is evident as the system is made more nonlinear and that with the introduction of parametric excitation force term the system’s motion becomes periodic resulting in the elimination of chaos and the reduction in amplitude of vibration.


Author(s):  
Koichi INOUE ◽  
Tatsuro SUZUKI ◽  
Ryogo ABE ◽  
Michinari FUJIKI ◽  
Satoshi NISHIYAMA

2017 ◽  
Vol 30 (3) ◽  
pp. 689-697
Author(s):  
Yuexia CHEN ◽  
Long CHEN ◽  
Xing XU ◽  
Ruochen WANG ◽  
Xiaofeng YANG

1989 ◽  
Vol 17 (1) ◽  
pp. 66-84
Author(s):  
A. R. Williams

Abstract This is a summary of work by the author and his colleagues, as well as by others reported in the literature, that demonstrate a need for considering a vehicle, its tires, and the road surface as a system. The central theme is interaction at the footprint, especially that of truck tires. Individual and interactive effects of road and tires are considered under the major topics of road aggregate (macroscopic and microscopic properties), development of a novel road surface, safety, noise, rolling resistance, riding comfort, water drainage by both road and tire, development of tire tread compounds and a proving ground, and influence of tire wear on wet traction. A general conclusion is that road surfaces have both the major effect and the greater potential for improvement.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1402
Author(s):  
Taehee Lee ◽  
Yeohwan Yoon ◽  
Chanjun Chun ◽  
Seungki Ryu

Poor road-surface conditions pose a significant safety risk to vehicle operation, especially in the case of autonomous vehicles. Hence, maintenance of road surfaces will become even more important in the future. With the development of deep learning-based computer image processing technology, artificial intelligence models that evaluate road conditions are being actively researched. However, as the lighting conditions of the road surface vary depending on the weather, the model performance may degrade for an image whose brightness falls outside the range of the learned image, even for the same road. In this study, a semantic segmentation model with an autoencoder structure was developed for detecting road surface along with a CNN-based image preprocessing model. This setup ensures better road-surface crack detection by adjusting the image brightness before it is input into the road-crack detection model. When the preprocessing model was applied, the road-crack segmentation model exhibited consistent performance even under varying brightness values.


Sign in / Sign up

Export Citation Format

Share Document