Change made in shop floor management to transform a conventional production system into an "Industry 4.0": Case studies in SME automotive production manufacturing

Author(s):  
Sorina Moica ◽  
Jaione Ganzarain ◽  
Dorleta Ibarra ◽  
Peti Ferencz
Author(s):  
Dominik T. Matt ◽  
Erwin Rauch ◽  
Michael Riedl

Industry 4.0 is for most companies and especially for small and medium sized enterprises (SMEs) one of the major challenges after the wave of lean management. The aim of this chapter is to provide a methodological guidance for the practical use of the Industry 4.0 vision and principles in production system design in the specific context of SMEs. Based on the analysis of literature, a procedure model for the target-oriented introduction of Industry 4.0 principles in SMEs is proposed. A first practical evaluation of the approach is carried out based on two industrial case studies. The experiences made in the industrial cases show that Industry 4.0 is not limited to the application in large enterprises but is very suitable also for SME. This chapter contributes, with its case-study-based methodology, to the existing sparse knowledge on the introduction of Industry 4.0 in SME production systems.


Author(s):  
Dominik T. Matt ◽  
Erwin Rauch ◽  
Michael Riedl

Industry 4.0 is for most companies and especially for small and medium sized enterprises (SMEs) one of the major challenges after the wave of lean management. The aim of this chapter is to provide a methodological guidance for the practical use of the Industry 4.0 vision and principles in production system design in the specific context of SMEs. Based on the analysis of literature, a procedure model for the target-oriented introduction of Industry 4.0 principles in SMEs is proposed. A first practical evaluation of the approach is carried out based on two industrial case studies. The experiences made in the industrial cases show that Industry 4.0 is not limited to the application in large enterprises but is very suitable also for SME. This chapter contributes, with its case-study-based methodology, to the existing sparse knowledge on the introduction of Industry 4.0 in SME production systems.


2021 ◽  
Vol 7 (4) ◽  
pp. 215
Author(s):  
Varun Tripathi ◽  
Somnath Chattopadhyaya ◽  
Alok K. Mukhopadhyay ◽  
Shubham Sharma ◽  
Jujhar Singh ◽  
...  

Industry 4.0 emphasizes developing an innovative approach to eliminating the problems caused by environmental and shop floor waste, which is accomplished by a suitable process optimization approach. The process optimization approach is used to maximize productivity within limited constraints by observing end-to-end management systems. The present research work developed an innovative agile model using the lean, smart, and green approach to improve operational performance within limited constraints in Industry 4.0. The proposed model was developed by thoroughly reviewing research articles conducted over the past decades on process optimization approaches that include lean manufacturing, smart manufacturing, kaizen, and lean six sigma. The model was validated through two real production case studies in the mining machinery and automobile industries. The present article concluded that overall operational performance was enhanced in both case studies by improvement in different factors, including working environment, worker efficiency, environmental evolution, logistics management, and resources utilization. The authors of the present article strongly believe that the proposed innovative agile model would help people in industry make aesthetic and smart sustainable production systems in Industry 4.0 within limited constraints.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4109
Author(s):  
Bożena Gajdzik ◽  
Radosław Wolniak

The publication presents a picture of modern steelworks that is evolving from steelworks 3.0 to steelworks 4.0. The paper was created on the basis of secondary sources of information (desk research). The entire publication concerns the emerging opportunities for the development of the steel producers to Industry 4.0 and the changes already implemented in the steel plants. The collected information shows the support environment for changes in the steel sector (EU programs), the levels of evolution of steel mills, along with the areas of change in the steel industry and implemented investment projects. The work consists of a theoretical part based on a literature review and a practical part based on case studies. The work ends with a discussion in which the staged and segmented nature of the changes introduced in the analyzed sector is emphasized. Based on the three case studies described in the paper, a comparative analysis was conducted between them. When we tried to compare methods used in the three analyzed steel producers (capital groups): ArcelorMittal, Thyssenkrupp, and Tata Steel Group, it can be seen that in all organizations, the main problem connected with steelworks 4.0 transition is the digitalization of all processes within an organization and in the entire supply chain. This is realized using various tools and methods but they are concentrated on using technologies and methods such as artificial intelligence, drones, virtual reality, full automatization, and industrial robots. The effects are connected to better relations with customers, which leads to an increase in customer satisfaction and the organizations’ profit. The steel industry will undergo further strong changes, bringing it closer to Industry 4.0 because it occupies an important place in the economies of many countries due to the strong dependence of steel producers on the markets of the recipients (steel consumers). Steel is the basic material needed to make many products, and its properties have been valued for centuries. In addition, steel mills with positive economic, social, and environmental aspects are part of the concept of sustainability for industries and economies.


2021 ◽  
Vol 1 ◽  
pp. 141-150
Author(s):  
Honorine Harlé ◽  
Pascal Le Masson ◽  
Benoit Weil

AbstractIn industry, there is at once a strong need for innovation and a need to preserve the existing system of production. Thus, although the literature insists on the necessity of the current change toward Industry 4.0, how to implement it remains problematic because the preservation of the factory is at stake. Moreover, the question of the evolution of the system depends on its innovative capability, but it is difficult to understand how a new rule can be designed and implemented in a factory. This tension between preservation and innovation is often explained in the literature as a process of creative destruction. Looking at the problem from another perspective, this article models the factory as a site of creative heritage, enabling creation within tradition, i.e., creating new rules while preserving the system of rules. Two case studies are presented to illustrate the model. The paper shows that design in the factory relies on the ability to validate solutions. To do so, the design process can explore and give new meaning to the existing rules. The role of innovation management is to choose the degree of revision of the rules and to make it possible.


2021 ◽  
Vol 1 ◽  
pp. 3149-3158
Author(s):  
Álvaro Aranda Muñoz ◽  
Yvonne Eriksson ◽  
Yuji Yamamoto ◽  
Ulrika Florin ◽  
Kristian Sandström

AbstractThe availability of new research for IoT support and the human-centric perspective of industry 4.0 opens a gap to support operators in unleashing their creativity so they can provide improvements opportunities with IoT technology. This paper presents a case-study carried out in four Swedish manufacturing companies, where four different workshops were facilitated to support operators in the conceptualization of manufacturing improvements with IoT technologies. The empirical material gathered during these workshops has been analyzed in five different reflective sessions and discussed in light of previous research from industry 4.0, operators, and IoT support. Results indicate that operators can collaboratively create conceptual IoT solutions and that expressiveness in communicating their ideas and needs using IoT technology is more relevant than technical aspects and details of their proposed IoT solutions. This technological expressiveness is identified as a necessary skill to be cultivated on the shop floor and can potentially contribute to making a more effective and socially sustainable industrial landscape in the future.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 628
Author(s):  
Michail J. Beliatis ◽  
Kasper Jensen ◽  
Lars Ellegaard ◽  
Annabeth Aagaard ◽  
Mirko Presser

This paper investigates digital traceability technologies taking careful consideration of the company’s needs to improve the traceability of products at the production of GPV Group as well as the efficiency and added value in their production cycles. GPV is primarily an electronics manufacturing service company (EMS) that manufactures electronic circuit boards, in addition to big metal products at their mechanics manufacturing sites. The company aims to embrace the next generation IoT technologies such as digital traceability in their internal supply chain at manufacturing sites in order to stay compatible with the Industry 4.0 requirements. In this paper, the capabilities of suitable digital traceability technologies are screened together with the actual GPV needs to determine if deployment of such technologies would benefit GPV shop floor operations and can solve the issues they face due to a lack of traceability. The traceability term refers to tracking the geolocation of products throughout the manufacturing steps and how that functionality can foster further optimization of the manufacturing processes. The paper focuses on comparing different IoT technologies and analyze their positive and negative attributes to identify a suitable technological solution for product traceability in the metal manufacturing industry. Finally, the paper proposes a suitable implementation road map for GPV, which can also be adopted from other metal manufacturing industries to deploy Industry 4.0 traceability at shop floor level.


2021 ◽  
Author(s):  
Simon Deuring

Data shifts the balance of power in the economy dramatically. However, digitisation also offers a multitude of opportunities: the development of new business areas, cost reductions and personalised offers. The increasing speed of technological development forces the legal system to tread on thin ice. Is the key in a regulated or free market? The book shows risks and opportunities of both options, as well as the strengths and weaknesses in European and national law. By using the latest case studies and entering new areas of the law, the book explores the question of how the Industry 4.0 should be designed.


2021 ◽  
Author(s):  
Prerna Srivastava ◽  
Gaurav Verma ◽  
Varun Kumar Kakar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document