Design of Coaxial Magnetic Gear Mechanisms Using Taguchi Method

Author(s):  
Yi-Chang Wu ◽  
Mi-Ching Tsai ◽  
Saian Nur Fajri ◽  
Feng-Ming Ou
Keyword(s):  
2020 ◽  
Vol 64 (1-4) ◽  
pp. 959-967
Author(s):  
Se-Yeong Kim ◽  
Tae-Woo Lee ◽  
Yon-Do Chun ◽  
Do-Kwan Hong

In this study, we propose a non-contact 80 kW, 60,000 rpm coaxial magnetic gear (CMG) model for high speed and high power applications. Two models with the same power but different radial and axial sizes were optimized using response surface methodology. Both models employed a Halbach array to increase torque. Also, an edge fillet was applied to the radial magnetized permanent magnet to reduce torque ripple, and an axial gap was applied to the permanent magnet with a radial gap to reduce eddy current loss. The models were analyzed using 2-D and 3-D finite element analysis. The torque, torque ripple and eddy current loss were compared in both models according to the materials used, including Sm2Co17, NdFeBs (N42SH, N48SH). Also, the structural stability of the pole piece structure was investigated by forced vibration analysis. Critical speed results from rotordynamics analysis are also presented.


2013 ◽  
Vol 133 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Yuji Enomoto ◽  
Norihisa Iwasaki ◽  
Masashi Kitamura ◽  
Masahiro Mita ◽  
Masahiro Masuzawa

2017 ◽  
Vol 13 (9) ◽  
pp. 6475-6479
Author(s):  
M. Arulraj ◽  
P.K. Palani ◽  
L. Venkatesh

Aluminium based composites exhibit many attractive material properties such as increased stiffness, wear resistance, specific strength and vibration damping and decreased co-efficient of thermal expansion compared with the conventional aluminium alloys. Aluminium Matrix Composites consist of non-metallic reinforcement which offers advantageous properties over base material. Reinforcements like SiC, B4C and Al2O3 are normally preferred to improve the mechanical properties. Here Aluminum LM25 is selected as matrix material while Silicon carbide and Boron carbide are selected as reinforcement material. The fabrication of aluminium matrix was done by stir casting method. In the present study an attempt has been made to investigate the effect of three major stir casting parameters (stir speed, stir duration and preheated temperature of reinforcement material) on stir casting of Aluminium LM25 - SiC - B4C composite. Experiments were conducted based on Taguchi methodology. Taguchi quality design concepts of L9 orthogonal array has been used to determine S/N ratio and through S/N ratio a set of optimum stir casting parameters were obtained. The experimental results confirmed the validity of Taguchi method for enhancing tensile strength of castings. 


2008 ◽  
Vol 3 (2) ◽  
pp. 63-69
Author(s):  
M. Sivapragash ◽  
◽  
V. Sateeshkumar ◽  
P.R. Lakshminarayanan ◽  
R. Karthikeyan ◽  
...  

2013 ◽  
Vol 1 (3) ◽  
pp. 37-42
Author(s):  
Deepak Rajendra Unune ◽  
◽  
Amit Aherwar ◽  
B.P. Pathri ◽  
Jai Kishan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document