Optimization of Process Parameters in Stir Casting of Hybrid Metal Matrix (LM25/SiC/B4C) Composite Using Taguchi Method

2017 ◽  
Vol 13 (9) ◽  
pp. 6475-6479
Author(s):  
M. Arulraj ◽  
P.K. Palani ◽  
L. Venkatesh

Aluminium based composites exhibit many attractive material properties such as increased stiffness, wear resistance, specific strength and vibration damping and decreased co-efficient of thermal expansion compared with the conventional aluminium alloys. Aluminium Matrix Composites consist of non-metallic reinforcement which offers advantageous properties over base material. Reinforcements like SiC, B4C and Al2O3 are normally preferred to improve the mechanical properties. Here Aluminum LM25 is selected as matrix material while Silicon carbide and Boron carbide are selected as reinforcement material. The fabrication of aluminium matrix was done by stir casting method. In the present study an attempt has been made to investigate the effect of three major stir casting parameters (stir speed, stir duration and preheated temperature of reinforcement material) on stir casting of Aluminium LM25 - SiC - B4C composite. Experiments were conducted based on Taguchi methodology. Taguchi quality design concepts of L9 orthogonal array has been used to determine S/N ratio and through S/N ratio a set of optimum stir casting parameters were obtained. The experimental results confirmed the validity of Taguchi method for enhancing tensile strength of castings. 

2017 ◽  
Vol 13 (11) ◽  
pp. 6038-6042 ◽  
Author(s):  
M. Arulra ◽  
P.K. Palani ◽  
L. Venkatesh

Aluminium based composites exhibit many attractive material properties such as increased stiffness, wear resistance, specific strength and vibration damping and decreased co-efficient of thermal expansion compared with the conventional aluminium alloys. Aluminium Matrix Composites consist of non-metallic reinforcement which offers advantageous properties over base material. Reinforcements like SiC, B4C and Al2O3 are normally preferred to improve the mechanical properties. Here Aluminum LM25 is selected as matrix material while Silicon carbide and Boron carbide are selected as reinforcement material. The fabrication of aluminium matrix was done by stir casting method. In the present study an attempt has been made to investigate the effect of three major stir casting parameters (stir speed, stir duration and preheated temperature of reinforcement material) on stir casting of Aluminium LM25 - SiC - B4C composite. Experiments were conducted based on Taguchi methodology. Taguchi quality design concepts of L9 orthogonal array has been used to determine S/N ratio and through S/N ratio a set of optimum stir casting parameters were obtained. The experimental results confirmed the validity of Taguchi method for enhancing tensile strength of castings.


2021 ◽  
Vol 23 (10) ◽  
pp. 44-60
Author(s):  
M. Thayumanavan ◽  
◽  
K. RVijayaKumar ◽  

Among the various types of manufacturing process methods for discontinuous metal matrix composite, stir casting is the best suitable manufacturing process to fabricate particulate reinforced metal matrix composite. Its benefit is its simplicity, durability, and adaptability. The main issue in this process is proper wetting of reinforcement in aluminium matrix material. Only proper wetting results in a homogeneous dispersion of reinforcement material, and these homogeneous dispersions help to improve the properties of metal matrix composite material. The purpose of this paper was to discuss the outline of the stir casting process, process parameters, and the contribution effect of process parameters. This paper also presents about of the conditions should follow during the addition of reinforcement material and matrix material pouring in mould cavity. This paper also discusses the conditions that must be met during the addition of reinforcement material and matrix material pouring in the mould cavity. This paper also looked into the impact and contribution of stirring casting time, speed, and temperature in aluminium metal matrix composites, as well as processing issues in aluminium metal matrix composites, challenges, and research opportunities.


2015 ◽  
Vol 772 ◽  
pp. 263-267 ◽  
Author(s):  
Ramanathan Arunachalam ◽  
Majid Al-Maharbi ◽  
Yahya Al Kiyumi ◽  
Elyas Aal-Thani ◽  
Mohammed Al Mafraji

Metal matrix composites (MMC's) have attracted the attention of researchers for quite some time. In the last 15 years, many studies have been reported in this field of MMC production through various routes. The most commonly used process for producing MMC is stir casting process whereby the reinforcement material is incorporated into the molten metal by stirring. It is a relatively low cost manufacturing process that is capable of producing high quality MMC. However, the process is associated with issues such as attaining uniform distribution of particles, wettability between particles and porosity in the MMCs. Because of these challenges, there has been continuous improvement in the process as well as the design of the furnace. In this research, an innovatively designed bottom tapping furnace has been used to produce the MMCs and the produced sample is characterized.


Author(s):  
Naseem Ahamad ◽  
Aas Mohammad ◽  
Kishor Kumar Sadasivuni ◽  
Pallav Gupta

The aim of the present study is to investigate the effect of alumina (Al2O3)–carbon (C) reinforcement on the properties of aluminium matrix. Aluminium matrix reinforced with Al2O3–carbon (2.5, 5, 7.5 and 10 wt.%) in equal proportion was prepared by stir casting. Phase, microstructure, EDS, density, hardness, impact strength and tensile strength of prepared samples have been investigated. X-ray diffraction reports the intermediate phase formation between the matrix and reinforcement phase due to interfacial bonding between them. Scanning electron microscopy shows that Al matrix has uniform distribution of reinforcement particles, i.e. Al2O3 and carbon. Density decreases due to variation of reinforcement because ceramic reinforcement has low density. Hardness decreases due to variation of carbon since it has soft nature. Impact strength was found to increase with addition of reinforcement. Hybrid composite of Al and 5% Al2O3 + 5% carbon reinforcement has maximum engineering and true ultimate tensile strength. It is expected that the present hybrid metal matrix composites will be useful for fabricating stock screws.


2016 ◽  
Vol 684 ◽  
pp. 97-103 ◽  
Author(s):  
Katja Pranke ◽  
Sergey Guk

The material flow in particle reinforced metal-matrix-composites (MMC) had been investigated. The composite consisted of TRIP steel and magnesium stabilized ZrO2 particles (Mg‑PSZ) in volume fractions of 0 %, 5 % and 20 %. The basic materials were produced by hot-pressing and showed a very homogeneous particle distribution and a almost full density. Then the samples were cut to wedge shape and hot-rolled with a constant roll gap. Caused by the shape, the true strain increased over the length and reached a maximum of true strain of 0.6. The strain rate was set to be higher than 0.1 and lower than 10/ s. After rolling, it was possible to combine rolling force, true strain and the material flow due to the grid on the surface. With an increase in volume fraction of Mg‑PSZ the rolling force increases as well. Metallographic examinations were performed to determine and document the flow of particles within the composite due to true strain conditions. It was found that the particles flow with the base material and turn parallel to the rolling direction. This effect was measured using the degree of orientation of partially oriented linear structure elements Ω12, according to ASTM E 1268-01. The index was increasing with increasing true strain value. Further microscopic examination showed debonding of the interface between particles and matrix-material. For MMC’s having a volume fraction of 20 % Mg-PSZ a true strain at fracture of 0.5 to 0.6 was determined.


2020 ◽  
Vol 4 (2) ◽  
pp. 115-126
Author(s):  
Anil K. Matta ◽  
Naga S. S. Koka ◽  
Sameer K. Devarakonda

Magnesium Metal Matrix Composites (Mg MMC) have been the focus of consideration by many researchers for the past few years. Many applications of Mg MMCs were evolved in less span of time in the automotive and aerospace sector to capture the benefit of high strength to weight ratio along with improved corrosion resistance. However, the performance of these materials in critical conditions is significantly influenced by several factors including the fabrication methods used for processing the composites. Most of the papers addressed all the manufacturing strategies of Mg MMC but no paper was recognized as a dedicated source for magnesium composites prepared through stir casting process. Since stir casting is the least expensive and most common process in the preparation of composites, this paper reviews particulate based Mg MMCs fabricated with stir casting technology. AZ91 series alloys are considered as the matrix material while the effect of different particle reinforcements, sizes , weight fractions on mechanical and tribological responses are elaborated in support with micro structural examinations. Technical difficulties and latest innovations happened during the last decade in making Mg MMCs as high performance material are also presented.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 579
Author(s):  
Hemanth Raju.T ◽  
V S.Ramamurthy

Composite materials are widely used in variety of applications such as aerospace, automotive and structural components resulting in savings of material and energy. Particulate reinforced Aluminium metal matrix composite materials which are having desirable properties such as high specific stiffness, high specific strength, high coefficient of thermal expansion, increased fatigue resistance and superior dimensional stability compared to unreinforced alloys. In the present work an attempt has been made to develop composites using Al 6061 as a matrix material reinforced with Zircon particulates using stir casting technique. The Zircon particulates were varied in steps of 0 %, 3%, 6%, 9% and 12%. The Specimens were prepared as per the ASTM standards. The prepared composites were characterized by microstructural studies using optical microscope and tensile strength and hardness properties were evaluated. Zircon particles were observed to refine the grains and were distributed homogeneously in the aluminium matrix at 9% of Zircon. The tensile and hardness properties were higher in case of composites when compared to unreinforced Al 6061 matrix. Also increasing addition level of Zircon has resulted in further increase in both tensile strength and hardness values and optimum value was obtained at 9% of Zircon. 


Author(s):  
G. Sathishkumar ◽  
S.J. Irudayaraja ◽  
S. Sivaganesan ◽  
M. Thuyavan

Metal matrix composites are of great interest in industrial applications for its light weight with high specific strength, stiffness and heat resistance. The processing of MMCs by stir casting process is an effective way of manufacturing. In this paper the comparison of mechanical properties of Aluminium 7075 as a base metal and varying composition of fly ash by 3 and 6 wt.% SiC and 7% fly ash as reinforcement is carried out. Scanning electron microscope was used to confirm the presence of SiC and fly ash. The composites with 6% SiC was found to have maximum hardness whereas composites of 6% and 5 % fly ash were found to have minimum hardness. The mechanical properties such as wear resistance were studied. From the results, it has been finalized that the addition of 6% SiC was identified to show the least wear rate.


Sign in / Sign up

Export Citation Format

Share Document